Thorium-234 is increasingly used as a tracer of ocean particle flux, primarily as a means to estimate particulate organic carbon export from the surface ocean. This requires determination of both the 234 Th activity distribution (in order to calculate 234 Th fluxes) and an estimate of the C / 234 Th ratio on sinking particles, to empirically derive C fluxes. In reviewing C / 234 Th variability, results obtained using a single sampling method show the most predictable behavior. For example, in most studies that employ in situ pumps to collect size fractionated particles, C / 234 Th either increases or is relatively invariant with increasing particle size (size classes N 1 to 100s Am). Observations also suggest that C / 234 Th decreases with depth and can vary significantly between regions (highest in blooms of large diatoms and highly productive coastal settings). Comparisons of C fluxes derived from 234 Th show good agreement with independent estimates of C flux, including mass balances of C and nutrients over appropriate space and time scales (within factors of 2-3). We recommend sampling for C / 234 Th from a standard depth of 100 m, or at least one depth below www.elsevier.com/locate/marchem the mixed layer using either large volume size fractionated filtration to capture the rarer large particles, or a sediment trap or other device to collect sinking particles. We also recommend collection of multiple 234 Th profiles and C / 234 Th samples during the course of longer observation periods to better sample temporal variations in both 234 Th flux and the characteristic of sinking particles. We are encouraged by new technologies which are optimized to more reliably sample truly settling particles, and expect the utility of this tracer to increase, not just for upper ocean C fluxes but for other elements and processes deeper in the water column. D
Macroalgae form the most extensive and productive benthic marine vegetated habitats globally but their inclusion in Blue Carbon (BC) strategies remains controversial. We review the arguments offered to reject or include macroalgae in the BC framework, and identify the challenges that have precluded macroalgae from being incorporated so far. Evidence that macroalgae support significant carbon burial is compelling. The carbon they supply to sediment stocks in angiosperm BC habitats is already included in current assessments, so that macroalgae are de facto recognized as important donors of BC. The key challenges are (i) documenting macroalgal carbon sequestered beyond BC habitat, (ii) tracing it back to source habitats, and (iii) showing that management actions at the habitat lead to increased sequestration at the sink site. These challenges apply equally to carbon exported from BC coastal habitats. Because of the large carbon sink they support, incorporation of macroalgae into BC accounting and actions is an imperative. This requires a paradigm shift in accounting procedures as well as developing methods to enable the capacity to trace carbon from donor to sink habitats in the ocean.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.