The Simons Observatory (SO) is a new cosmic microwave background experiment being built on Cerro Toco in Chile, due to begin observations in the early 2020s. We describe the scientific goals of the experiment, motivate the design, and forecast its performance. SO will measure the temperature and polarization anisotropy of the cosmic microwave background in six frequency bands centered at: 27, 39, 93, 145, 225 and 280 GHz. The initial configuration of SO will have three small-aperture 0.5-m telescopes and one large-aperture 6-m telescope, with a total of 60,000 cryogenic bolometers. Our key science goals are to characterize the primordial perturbations, measure the number of relativistic species and the mass of neutrinos, test for deviations from a cosmological constant, improve our understanding of galaxy evolution, and constrain the duration of reionization. The small aperture telescopes will target the largest angular scales observable from Chile, mapping ≈ 10% of the sky to a white noise level of 2 µK-arcmin in combined 93 and 145 GHz bands, to measure the primordial tensor-to-scalar ratio, r, at a target level of σ(r) = 0.003. The large aperture telescope will map ≈ 40% of the sky at arcminute angular resolution to an expected white noise level of 6 µK-arcmin in combined 93 and 145 GHz bands, overlapping with the majority of the Large Synoptic Survey Telescope sky region and partially with the Dark Energy Spectroscopic Instrument. With up to an order of magnitude lower polarization noise than maps from the Planck satellite, the high-resolution sky maps will constrain cosmological parameters derived from the damping tail, gravitational lensing of the microwave background, the primordial bispectrum, and the thermal and kinematic Sunyaev-Zel'dovich effects, and will aid in delensing the large-angle polarization signal to measure the tensorto-scalar ratio. The survey will also provide a legacy catalog of 16,000 galaxy clusters and more than 20,000 extragalactic sources a .
The Spectral and Photometric Imaging REceiver (SPIRE), is the Herschel Space Observatory's submillimetre camera and spectrometer. It contains a three-band imaging photometer operating at 250, 350 and 500 μm, and an imaging Fourier-transform spectrometer (FTS) which covers simultaneously its whole operating range of 194-671 μm (447-1550 GHz). The SPIRE detectors are arrays of feedhorn-coupled bolometers cooled to 0.3 K. The photometer has a field of view of 4 × 8 , observed simultaneously in the three spectral bands. Its main operating mode is scan-mapping, whereby the field of view is scanned across the sky to achieve full spatial sampling and to cover large areas if desired. The spectrometer has an approximately circular field of view with a diameter of 2.6 . The spectral resolution can be adjusted between 1.2 and 25 GHz by changing the stroke length of the FTS scan mirror. Its main operating mode involves a fixed telescope pointing with multiple scans of the FTS mirror to acquire spectral data. For extended source measurements, multiple position offsets are implemented by means of an internal beam steering mirror to achieve the desired spatial sampling and by rastering of the telescope pointing to map areas larger than the field of view. The SPIRE instrument consists of a cold focal plane unit located inside the Herschel cryostat and warm electronics units, located on the spacecraft Service Module, for instrument control and data handling. Science data are transmitted to Earth with no on-board data compression, and processed by automatic pipelines to produce calibrated science products. The in-flight performance of the instrument matches or exceeds predictions based on pre-launch testing and modelling: the photometer sensitivity is comparable to or slightly better than estimated pre-launch, and the spectrometer sensitivity is also better by a factor of 1.5-2. Key words. instrumentation: photometers -instrumentation: spectrographs -space vehicles: instruments -submillimeter: generalHerschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
We present new arcminute-resolution maps of the Cosmic Microwave Background temperature and polarization anisotropy from the Atacama Cosmology Telescope, using data taken from 2013–2016 at 98 and 150 GHz. The maps cover more than 17,000 deg2, the deepest 600 deg2 with noise levels below 10μK-arcmin. We use the power spectrum derived from almost 6,000 deg2 of these maps to constrain cosmology. The ACT data enable a measurement of the angular scale of features in both the divergence-like polarization and the temperature anisotropy, tracing both the velocity and density at last-scattering. From these one can derive the distance to the last-scattering surface and thus infer the local expansion rate, H 0. By combining ACT data with large-scale information from WMAP we measure H 0=67.6± 1.1 km/s/Mpc, at 68% confidence, in excellent agreement with the independently-measured Planck satellite estimate (from ACT alone we find H 0=67.9± 1.5 km/s/Mpc). The ΛCDM model provides a good fit to the ACT data, and we find no evidence for deviations: both the spatial curvature, and the departure from the standard lensing signal in the spectrum, are zero to within 1σ; the number of relativistic species, the primordial Helium fraction, and the running of the spectral index are consistent with ΛCDM predictions to within 1.5–2.2σ. We compare ACT, WMAP, and Planck at the parameter level and find good consistency; we investigate how the constraints on the correlated spectral index and baryon density parameters readjust when adding CMB large-scale information that ACT does not measure. The DR4 products presented here will be publicly released on the NASA Legacy Archive for Microwave Background Data Analysis.
We summarize the first results from the Gould Belt Survey, obtained toward the Aquila rift and Polaris Flare regions during the science demonstration phase of Herschel. Our 70-500 μm images taken in parallel mode with the SPIRE and PACS cameras reveal a wealth of filamentary structure, as well as numerous dense cores embedded in the filaments. Between ∼350 and 500 prestellar cores and ∼45-60 Class 0 protostars can be identified in the Aquila field, while ∼300 unbound starless cores and no protostars are observed in the Polaris field. The prestellar core mass function (CMF) derived for the Aquila region bears a strong resemblance to the stellar initial mass function (IMF), already confirming the close connection between the CMF and the IMF with much better statistics than earlier studies. Comparing and contrasting our Herschel results in Aquila and Polaris, we propose an observationally-driven scenario for core formation according to which complex networks of long, thin filaments form first within molecular clouds, and then the densest filaments fragment into a number of prestellar cores via gravitational instability.
We present the temperature and polarization angular power spectra of the CMB measured by the Atacama Cosmology Telescope (ACT) from 5400 deg2 of the 2013–2016 survey, which covers >15000 deg2 at 98 and 150 GHz. For this analysis we adopt a blinding strategy to help avoid confirmation bias and, related to this, show numerous checks for systematic error done before unblinding. Using the likelihood for the cosmological analysis we constrain secondary sources of anisotropy and foreground emission, and derive a “CMB-only” spectrum that extends to ℓ=4000. At large angular scales, foreground emission at 150 GHz is ∼1% of TT and EE within our selected regions and consistent with that found by Planck. Using the same likelihood, we obtain the cosmological parameters for ΛCDM for the ACT data alone with a prior on the optical depth of τ=0.065±0.015. ΛCDM is a good fit. The best-fit model has a reduced χ2 of 1.07 (PTE=0.07) with H 0=67.9±1.5 km/s/Mpc. We show that the lensing BB signal is consistent with ΛCDM and limit the celestial EB polarization angle to ψ P =−0.07̂±0.09̂. We directly cross correlate ACT with Planck and observe generally good agreement but with some discrepancies in TE. All data on which this analysis is based will be publicly released.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.