In salt-sensitive hypertension, the accumulation of Na(+) in tissue has been presumed to be accompanied by a commensurate retention of water to maintain the isotonicity of body fluids. We show here that a high-salt diet (HSD) in rats leads to interstitial hypertonic Na(+) accumulation in skin, resulting in increased density and hyperplasia of the lymphcapillary network. The mechanisms underlying these effects on lymphatics involve activation of tonicity-responsive enhancer binding protein (TonEBP) in mononuclear phagocyte system (MPS) cells infiltrating the interstitium of the skin. TonEBP binds the promoter of the gene encoding vascular endothelial growth factor-C (VEGF-C, encoded by Vegfc) and causes VEGF-C secretion by macrophages. MPS cell depletion or VEGF-C trapping by soluble VEGF receptor-3 blocks VEGF-C signaling, augments interstitial hypertonic volume retention, decreases endothelial nitric oxide synthase expression and elevates blood pressure in response to HSD. Our data show that TonEBP-VEGF-C signaling in MPS cells is a major determinant of extracellular volume and blood pressure homeostasis and identify VEGFC as an osmosensitive, hypertonicity-driven gene intimately involved in salt-induced hypertension.
Osmotically inactive skin Na+ storage is characterized by Na+ accumulation without water accumulation in the skin. Negatively charged glycosaminoglycans (GAGs) may be important in skin Na+ storage. We investigated changes in skin GAG content and key enzymes of GAG chain polymerization during osmotically inactive skin Na+ storage. Female Sprague-Dawley rats were fed a 0.1% or 8% NaCl diet for 8 wk. Skin GAG content was measured by Western blot analysis. mRNA content of key dermatan sulfate polymerization enzymes was measured by real-time PCR. The Na+ concentration in skin was determined by dry ashing. Skin Na+ concentration during osmotically inactive Na+ storage was 180–190 mmol/l. Increasing skin Na+ coincided with increasing GAG content in cartilage and skin. Dietary NaCl loading coincided with increased chondroitin synthase mRNA content in the skin, whereas xylosyl transferase, biglycan, and decorin content were unchanged. We conclude that osmotically inactive skin Na+ storage is an active process characterized by an increased GAG content in the reservoir tissue. Inhibition or disinhibition of GAG chain polymerization may regulate osmotically inactive Na+ storage.
Compared with age-matched men, women are resistant to the hypertensive effects of dietary NaCl; however, after menopause, the incidence of salt-sensitive hypertension is similar in women and men. We recently suggested that osmotically inactive Na+ storage contributes to the development of salt-sensitive hypertension. The connective tissues, including those immediately below the skin that may serve as a reservoir for osmotically inactive Na+ storage, are affected by menopause. We tested the hypothesis that ovariectomy (OVX) might reduce osmotically inactive Na+ storage capacity in the body, particularly in the skin. Male, female-fertile, and female OVX Sprague-Dawley (SD) rats were fed a high (8%)- or low (0.1%)-NaCl diet. The groups received the diet for 4 or 8 wk. At the end of the experiment, subgroups received 0.9% saline infusion and urinary Na+ and K+ excretion was measured. Wet and dry weight (DW), water content in the body and skin, total body Na+ (rTBNa+) and skin Na+ (rSKNa+) content were measured relative to DW by desiccation and dry ashing. There were no gender differences in osmotically inactive Na+ storage in SD rats. All SD rats accumulated Na+ if fed 8% NaCl, but rTBNa+ was lower in OVX rats than in fertile rats on a low (P < 0.001)- and a high (P < 0.05)-salt diet. OVX decreased rSKNa+ (P < 0.01) in the rats. A high-salt diet led to Na+ accumulation (DeltaSKNa+) in the skin in all SD rats. Osmotically inactive skin Na+ accumulation was approximately 66% of DeltaSKNa+ in female and 82% in male-fertile rats, but there was no osmotically inactive Na+ accumulation in OVX rats fed 8% NaCl. We conclude that skin is an osmotically inactive Na+ reservoir that accumulates Na+ when dietary NaCl is excessive. OVX leads to an acquired reduction of osmotically inactive Na+ storage in SD rats that predisposes the rats to volume excess despite a reduced Na+ content relative to body weight.
The idea that Na(+) retention inevitably leads to water retention is compelling; however, were Na(+) accumulation in part osmotically inactive, regulatory alternatives would be available. We speculated that in DOCA-salt rats Na(+) accumulation is excessive relative to water. Forty female Sprague-Dawley rats were divided into four subgroups. Groups 1 and 2 (controls) received tap water or 1% saline (salt) for 5 wk. Groups 3 and 4 received subcutaneous DOCA pellets and tap water or salt. Na(+), K(+), and water were measured in skin, bone, muscle, and total body by desiccation and consecutive dry ashing. DOCA-salt led to total body Na(+) excess (0.255 +/- 0.022 vs. 0.170 +/- 0.010 mmol/g dry wt; P < 0.001), whereas water retention was only moderate (0.685 +/- 0.119 vs. 0.648 +/- 0.130 ml/g wet wt; P < 0.001). Muscle Na(+) retention (0.220 +/- 0.029 vs. 0.145 +/- 0.021 mmol/g dry wt; P < 0.01) in DOCA-salt was compensated by muscle K(+) loss, indicating osmotically neutral Na(+)/K(+) exchange. Skin Na(+) retention (0.267 +/- 0.049 vs. 0.152 +/- 0.014 mmol/g dry wt; P < 0.001) in DOCA-salt rats was not balanced by K(+) loss, indicating osmotically inactive skin Na(+) storage. We conclude that DOCA-salt leads to tissue Na(+) excess relative to water. The relative Na(+) excess is achieved by two distinct mechanisms, namely, osmotically inactive Na(+) storage and osmotically neutral Na(+) retention balanced by K(+) loss. This "internal Na(+) escape" allows the maintenance of volume homeostasis despite increased total body Na(+).
Recent evidence suggested that Na can be stored in an osmotically inactive form. We investigated whether osmotically inactive Na storage is reduced in a rat model of salt-sensitive (SS) hypertension. SS and salt-resistant (SR) Dahl-Rapp rats as well as Sprague-Dawley (SD) rats were fed a high (8%)-or low (0.1%)-NaCl diet for 4 wk (n ϭ 10/group). Mean arterial pressure (MAP) was measured at the end of the experiment. Wet and dry weights, water content, total body Na (TBS), and bone Na content were measured by dessication and dry ashing. MAP was higher in both Dahl strains than in SD rats. In SS rats, 8% NaCl led to Na accumulation, water retention, and hypertension due to impaired renal Na excretion. There was no dietary-induced Na retention in SR and SD rats. TBS was variable; nevertheless, TBS was significantly correlated with body water and MAP in all strains. However, the extent of Na-associated volume and MAP increases was strain specific. Osmotically inactive Na in SD rats was threefold higher than in SS and SR rats. Both SS and SR Dahl rat strains displayed reduced osmotically inactive Na storage capacity compared with SD controls. A predisposition to fluid accumulation and high blood pressure results from this alteration. Additional factors, including impaired renal Na excretion, probably contribute to hypertension in SS rats. Our results draw attention to the role of osmotically inactive Na storage. salt sensitive; bone sodium; Dahl rats THE RELATIONSHIP BETWEEN SALT intake and blood pressure has been extensively studied in humans and provides evidence that subpopulations of humans are sensitive to alterations in salt intake. A well-established animal model for salt-sensitive (SS) hypertension is the Dahl rat. SS rats develop hypertension when fed a high-NaCl diet (6). Salt-resistant (SR) Dahl rats developed increased blood pressure after they received a transplanted kidney from an SS donor animal. Conversely, transplantation of SR donor kidneys into SS rats lowers blood pressure (5, 10). Despite the fact that the glomerular filtration rate is not different between both strains (2, 14), SS rats have an impaired ability to excrete Na (1, 2). However, this feature does not fully explain the development of SS hypertension (11). Thus the role of Na retention in the development of hypertension is unclear.Recent studies on long-term Na balance in humans showed that high dietary Na consumption with Na retention does not necessarily lead to expansion of the extracellular volume (8). This finding suggests that Na might be stored in an osmotically inactive form. We studied the relationship between osmotically inactive Na storage, total body Na (TBS), total body water (TBW), and hypertension in Dahl SS rats and control animals. Our initial primary hypothesis was that Dahl SS rats exhibit a reduced capacity for osmotically inactive Na storage that would predispose these animals to volume retention and thus lead to SS hypertension. The secondary hypothesis was that osmotically inactive Na storage is also deficient in...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.