BACKGROUND The programmed death 1 (PD-1) receptor is a negative regulator of T-cell effector mechanisms that limits immune responses against cancer. We tested the anti–PD-1 antibody lambrolizumab (previously known as MK-3475) in patients with advanced melanoma. METHODS We administered lambrolizumab intravenously at a dose of 10 mg per kilogram of body weight every 2 or 3 weeks or 2 mg per kilogram every 3 weeks in patients with advanced melanoma, both those who had received prior treatment with the immune checkpoint inhibitor ipilimumab and those who had not. Tumor responses were assessed every 12 weeks. RESULTS A total of 135 patients with advanced melanoma were treated. Common adverse events attributed to treatment were fatigue, rash, pruritus, and diarrhea; most of the adverse events were low grade. The confirmed response rate across all dose cohorts, evaluated by central radiologic review according to the Response Evaluation Criteria in Solid Tumors (RECIST), version 1.1, was 38% (95% confidence interval [CI], 25 to 44), with the highest confirmed response rate observed in the cohort that received 10 mg per kilogram every 2 weeks (52%; 95% CI, 38 to 66). The response rate did not differ significantly between patients who had received prior ipilimumab treatment and those who had not (confirmed response rate, 38% [95% CI, 23 to 55] and 37% [95% CI, 26 to 49], respectively). Responses were durable in the majority of patients (median follow-up, 11 months among patients who had a response); 81% of the patients who had a response (42 of 52) were still receiving treatment at the time of analysis in March 2013. The overall median progression-free survival among the 135 patients was longer than 7 months. CONCLUSIONS In patients with advanced melanoma, including those who had had disease progression while they had been receiving ipilimumab, treatment with lambrolizumab resulted in a high rate of sustained tumor regression, with mainly grade 1 or 2 toxic effects. (Funded by Merck Sharp and Dohme; ClinicalTrials.gov number, NCT01295827.)
SUMMARY We describe the landscape of genomic alterations in cutaneous melanomas through DNA, RNA, and protein-based analysis of 333 primary and/or metastatic melanomas from 331 patients. We establish a framework for genomic classification into one of four subtypes based on the pattern of the most prevalent significantly mutated genes: mutant BRAF, mutant RAS, mutant NF1, and Triple-WT (wild-type). Integrative analysis reveals enrichment of KIT mutations and focal amplifications and complex structural rearrangements as a feature of the Triple-WT subtype. We found no significant outcome correlation with genomic classification, but samples assigned a transcriptomic subclass enriched for immune gene expression associated with lymphocyte infiltrate on pathology review and high LCK protein expression, a T cell marker, were associated with improved patient survival. This clinicopathological and multidimensional analysis suggests that the prognosis of melanoma patients with regional metastases is influenced by tumor stroma immunobiology, offering insights to further personalize therapeutic decision-making.
We conducted comprehensive integrative molecular analyses of the complete set of tumors in The Cancer Genome Atlas (TCGA), consisting of approximately 10,000 specimens and representing 33 types of cancer. We performed molecular clustering using data on chromosome-arm-level aneuploidy, DNA hypermethylation, mRNA, and miRNA expression levels and reverse-phase protein arrays, of which all, except for aneuploidy, revealed clustering primarily organized by histology, tissue type, or anatomic origin. The influence of cell type was evident in DNA-methylation-based clustering, even after excluding sites with known preexisting tissue-type-specific methylation. Integrative clustering further emphasized the dominant role of cell-of-origin patterns. Molecular similarities among histologically or anatomically related cancer types provide a basis for focused pan-cancer analyses, such as pan-gastrointestinal, pan-gynecological, pan-kidney, and pan-squamous cancers, and those related by stemness features, which in turn may inform strategies for future therapeutic development.
BACKGROUND Approximately 50% of melanomas harbor activating (V600) mutations in the serine–threonine protein kinase B-RAF (BRAF). The oral BRAF inhibitor vemurafenib (PLX4032) frequently produced tumor regressions in patients with BRAF V600–mutant metastatic melanoma in a phase 1 trial and improved overall survival in a phase 3 trial. METHODS We designed a multicenter phase 2 trial of vemurafenib in patients with previously treated BRAF V600–mutant metastatic melanoma to investigate the efficacy of vemurafenib with respect to overall response rate (percentage of treated patients with a tumor response), duration of response, and overall survival. The primary end point was the overall response rate as ascertained by the independent review committee; overall survival was a secondary end point. RESULTS A total of 132 patients had a median follow-up of 12.9 months (range, 0.6 to 20.1). The confirmed overall response rate was 53% (95% confidence interval [CI], 44 to 62; 6% with a complete response and 47% with a partial response), the median duration of response was 6.7 months (95% CI, 5.6 to 8.6), and the median progression-free survival was 6.8 months (95% CI, 5.6 to 8.1). Primary progression was observed in only 14% of patients. Some patients had a response after receiving vemurafenib for more than 6 months. The median overall survival was 15.9 months (95% CI, 11.6 to 18.3). The most common adverse events were grade 1 or 2 arthralgia, rash, photosensitivity, fatigue, and alopecia. Cutaneous squamous-cell carcinomas (the majority, keratoacanthoma type) were diagnosed in 26% of patients. CONCLUSIONS Vemurafenib induces clinical responses in more than half of patients with previously treated BRAF V600–mutant metastatic melanoma. In this study with a long follow-up, the median overall survival was approximately 16 months. (Funded by Hoffmann–La Roche; ClinicalTrials.gov number, NCT00949702.)
Melanoma of the skin is a common cancer only in Europeans, whereas it arises in internal body surfaces (mucosal sites) and on the hands and feet (acral sites) in people throughout the world. Here we report analysis of whole-genome sequences from cutaneous, acral and mucosal subtypes of melanoma. The heavily mutated landscape of coding and non-coding mutations in cutaneous melanoma resolved novel signatures of mutagenesis attributable to ultraviolet radiation. However, acral and mucosal melanomas were dominated by structural changes and mutation signatures of unknown aetiology, not previously identified in melanoma. The number of genes affected by recurrent mutations disrupting non-coding sequences was similar to that affected by recurrent mutations to coding sequences. Significantly mutated genes included BRAF, CDKN2A, NRAS and TP53 in cutaneous melanoma, BRAF, NRAS and NF1 in acral melanoma and SF3B1 in mucosal melanoma. Mutations affecting the TERT promoter were the most frequent of all; however, neither they nor ATRX mutations, which correlate with alternative telomere lengthening, were associated with greater telomere length. Most melanomas had potentially actionable mutations, most in components of the mitogen-activated protein kinase and phosphoinositol kinase pathways. The whole-genome mutation landscape of melanoma reveals diverse carcinogenic processes across its subtypes, some unrelated to sun exposure, and extends potential involvement of the non-coding genome in its pathogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.