Nemaline myopathy (NM) is a common form of congenital myopathy, affecting approximately 1 in 50,000 individuals, and is defined by the presence of nonprogressive generalized muscle weakness and numerous electron-dense protein inclusions (nemaline bodies or rods) in skeletal myofibers (1). The most severely affected Nemaline myopathy (NM) is a genetic muscle disorder characterized by muscle dysfunction and electron-dense protein accumulations (nemaline bodies) in myofibers. Pathogenic mutations have been described in 9 genes to date, but the genetic basis remains unknown in many cases. Here, using an approach that combined whole-exome sequencing (WES) and Sanger sequencing, we identified homozygous or compound heterozygous variants in LMOD3 in 21 patients from 14 families with severe, usually lethal, NM. LMOD3 encodes leiomodin-3 (LMOD3), a 65-kDa protein expressed in skeletal and cardiac muscle. LMOD3 was expressed from early stages of muscle differentiation; localized to actin thin filaments, with enrichment near the pointed ends; and had strong actin filament-nucleating activity. Loss of LMOD3 in patient muscle resulted in shortening and disorganization of thin filaments. Knockdown of lmod3 in zebrafish replicated NM-associated functional and pathological phenotypes. Together, these findings indicate that mutations in the gene encoding LMOD3 underlie congenital myopathy and demonstrate that LMOD3 is essential for the organization of sarcomeric thin filaments in skeletal muscle.
α-Actinin-3 deficiency occurs in approximately 16% of the global population due to homozygosity for a common nonsense polymorphism in the ACTN3 gene. Loss of α-actinin-3 is associated with reduced power and enhanced endurance capacity in elite athletes and nonathletes due to "slowing" of the metabolic and physiological properties of fast fibers. Here, we have shown that α-actinin-3 deficiency results in increased calcineurin activity in mouse and human skeletal muscle and enhanced adaptive response to endurance training. α-Actinin-2, which is differentially expressed in α-actinin-3-deficient muscle, has higher binding affinity for calsarcin-2, a key inhibitor of calcineurin activation. We have further demonstrated that α-actinin-2 competes with calcineurin for binding to calsarcin-2, resulting in enhanced calcineurin signaling and reprogramming of the metabolic phenotype of fast muscle fibers. Our data provide a mechanistic explanation for the effects of the ACTN3 genotype on skeletal muscle performance in elite athletes and on adaptation to changing physical demands in the general population. In addition, we have demonstrated that the sarcomeric α-actinins play a role in the regulation of calcineurin signaling.Introduction α-Actinin-3 is one of the major components of the skeletal muscle Z-disk in fast-twitch muscle fibers (1) and interacts with multiple structural, metabolic, and signaling proteins (2, 3). Homozygosity for a common nonsense polymorphism in the ACTN3 gene (R577X) results in complete α-actinin-3 deficiency in an estimated 16% of the global population (4) and is associated with variations in human muscle performance. The ACTN3 577XX-null genotype is markedly underrepresented in elite sprint and power athletes (5-9) and is associated with reduced muscle strength and sprint performance in nonathlete cohorts (10-13), suggesting that α-actinin-3 deficiency has a detrimental effect on the optimal function of fast muscle fibers. In contrast, the ACTN3 577XX genotype is overrepresented in elite endurance athlete cohorts (5, 14, 15), suggesting a beneficial effect on endurance capacity. Recent studies in athletes and nonathletes further suggest that the ACTN3 genotype influences the adaptive response of skeletal muscle to exercise training (10, 16).The Actn3 KO mouse model mimics the phenotypic effects of α-actinin-3 deficiency in humans (17). The closely related sarcomeric isoform α-actinin-2 compensates for the absence of α-actinin-3 and is expressed in all fiber types in Actn3 KO mice, similarly to ACTN3 577XX humans. Compared with WT mice, Actn3 KO mice have substantially lower grip strength, increased recovery from fatigue, and enhanced endurance exercise performance associated with increased levels of glycogen and a shift in fast muscle fiber properties toward a slow-twitch, oxidative phenotype, without
Vitamin D deficiency is associated with a range of muscle disorders, including myalgia, muscle weakness, and falls. In humans, polymorphisms of the vitamin D receptor (VDR) gene are associated with variations in muscle strength, and in mice, genetic ablation of VDR results in muscle fiber atrophy and motor deficits. However, mechanisms by which VDR regulates muscle function and morphology remain unclear. A crucial question is whether VDR is expressed in skeletal muscle and directly alters muscle physiology. Using PCR, Western blotting, and immunohistochemistry (VDR-D6 antibody), we detected VDR in murine quadriceps muscle. Detection by Western blotting was dependent on the use of hyperosmolar lysis buffer. Levels of VDR in muscle were low compared with duodenum and dropped progressively with age. Two in vitro models, C2C12 and primary myotubes, displayed dose- and time-dependent increases in expression of both VDR and its target gene CYP24A1 after 1,25(OH)2D (1,25 dihydroxyvitamin D) treatment. Primary myotubes also expressed functional CYP27B1 as demonstrated by luciferase reporter studies, supporting an autoregulatory vitamin D-endocrine system in muscle. Myofibers isolated from mice retained tritiated 25-hydroxyvitamin D3, and this increased after 3 hours of pretreatment with 1,25(OH)2D (0.1nM). No such response was seen in myofibers from VDR knockout mice. In summary, VDR is expressed in skeletal muscle, and vitamin D regulates gene expression and modulates ligand-dependent uptake of 25-hydroxyvitamin D3 in primary myofibers.
The ability of skeletal muscles to produce force at a high velocity, which is crucial for success in power and sprint performance, is strongly influenced by genetics and without the appropriate genetic make-up, an individual reduces his/her chances of becoming an exceptional power or sprinter athlete. Several genetic variants (i.e. polymorphisms) have been associated with elite power and sprint performance in the last few years and the current paradigm is that elite performance is a polygenic trait, with minor contributions of each variant to the unique athletic phenotype. The purpose of this review is to summarize the specific knowledge in the field of genetics and elite power performance, and to provide some future directions for research in this field. Of the polymorphisms associated with elite power and sprint performance, the α-actinin-3 R577X polymorphism provides the most consistent results. ACTN3 is the only gene that shows a genotype and performance association across multiple cohorts of elite power athletes, and this association is strongly supported by mechanistic data from an Actn3 knockout mouse model. The angiotensin-1 converting enzyme insertion/deletion polymorphism (ACE I/D, registered single nucleotide polymorphism [rs]4646994), angiotensinogen (AGT Met235Thr rs699), skeletal adenosine monophosphate deaminase (AMPD1) Gln(Q)12Ter(X) [also termed C34T, rs17602729], interleukin-6 (IL-6 -174 G/C, rs1800795), endothelial nitric oxide synthase 3 (NOS3 -786 T/C, rs2070744; and Glu298Asp, rs1799983), peroxisome proliferator-activated receptor-α (PPARA Intron 7 G/C, rs4253778), and mitochondrial uncoupling protein 2 (UCP2 Ala55Val, rs660339) polymorphisms have also been associated with elite power performance, but the findings are less consistent. In general, research into the genetics of athletic performance is limited by a small sample size in individual studies and the heterogeneity of study samples, often including athletes from multiple-difference sporting disciplines. In the future, large, homogeneous, strictly defined elite power athlete cohorts need to be established though multinational collaboration, so that meaningful genome-wide association studies can be performed. Such an approach would provide unbiased identification of potential genes that influence elite athletic performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.