OBJECTIVE MRI-guided low-intensity focused ultrasound (FUS) has been shown to reversibly open the blood-brain barrier (BBB), with the potential to deliver therapeutic agents noninvasively to target brain regions in patients with Alzheimer’s disease (AD) and other neurodegenerative conditions. Previously, the authors reported the short-term safety and feasibility of FUS BBB opening of the hippocampus and entorhinal cortex (EC) in patients with AD. Given the need to treat larger brain regions beyond the hippocampus and EC, brain volumes and locations treated with FUS have now expanded. To evaluate any potential adverse consequences of BBB opening on disease progression, the authors report safety, imaging, and clinical outcomes among participants with mild AD at 6–12 months after FUS treatment targeted to the hippocampus, frontal lobe, and parietal lobe. METHODS In this open-label trial, participants with mild AD underwent MRI-guided FUS sonication to open the BBB in β-amyloid positive regions of the hippocampus, EC, frontal lobe, and parietal lobe. Participants underwent 3 separate FUS treatment sessions performed 2 weeks apart. Outcome assessments included safety, imaging, neurological, cognitive, and florbetaben β-amyloid PET. RESULTS Ten participants (range 55–76 years old) completed 30 separate FUS treatments at 2 participating institutions, with 6–12 months of follow-up. All participants had immediate BBB opening after FUS and BBB closure within 24–48 hours. All FUS treatments were well tolerated, with no serious adverse events related to the procedure. All 10 participants had a minimum of 6 months of follow-up, and 7 participants had a follow-up out to 1 year. Changes in the Alzheimer’s Disease Assessment Scale–cognitive and Mini-Mental State Examination scores were comparable to those in controls from the Alzheimer’s Disease Neuroimaging Initiative. PET scans demonstrated an average β-amyloid plaque of 14% in the Centiloid scale in the FUS-treated regions. CONCLUSIONS This study is the largest cohort of participants with mild AD who received FUS treatment, and has the longest follow-up to date. Safety was demonstrated in conjunction with reversible and repeated BBB opening in multiple cortical and deep brain locations, with a concomitant reduction of β-amyloid. There was no apparent cognitive worsening beyond expectations up to 1 year after FUS treatment, suggesting that the BBB opening treatment in multiple brain regions did not adversely influence AD progression. Further studies are needed to determine the clinical significance of these findings. FUS offers a unique opportunity to decrease amyloid plaque burden as well as the potential to deliver targeted therapeutics to multiple brain regions in patients with neurodegenerative disorders.
ObjectiveTo determine whether the nucleus basalis of Meynert (NBM) may be a key network structure of altered functional connectivity in temporal lobe epilepsy (TLE), we examined fMRI with network-based analyses.MethodsWe acquired resting-state fMRI in 40 adults with TLE and 40 matched healthy control participants. We calculated functional connectivity of NBM and used multiple complementary network-based analyses to explore the importance of NBM in TLE networks without biasing our results by our approach. We compared patients to controls and examined associations of network properties with disease metrics and neurocognitive testing.ResultsWe observed marked decreases in connectivity between NBM and the rest of the brain in patients with TLE (0.91 ± 0.88, mean ± SD) vs controls (1.96 ± 1.13, p < 0.001, t test). Larger decreases in connectivity between NBM and fronto-parietal-insular regions were associated with higher frequency of consciousness-impairing seizures (r = −0.41, p = 0.008, Pearson). A core network of altered nodes in TLE included NBM ipsilateral to the epileptogenic side and bilateral limbic structures. Furthermore, normal community affiliation of ipsilateral NBM was lost in patients, and this structure displayed the most altered clustering coefficient of any node examined (3.46 ± 1.17 in controls vs 2.23 ± 0.93 in patients). Abnormal connectivity between NBM and subcortical arousal community was associated with modest neurocognitive deficits. Finally, a logistic regression model incorporating connectivity properties of ipsilateral NBM successfully distinguished patients from control datasets with moderately high accuracy (78%).ConclusionsThese results suggest that while NBM is rarely studied in epilepsy, it may be one of the most perturbed network nodes in TLE, contributing to widespread neural effects in this disabling disorder.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.