The dynamics of SARS-CoV-2 replication and shedding in humans remain poorly understood. We captured the dynamics of infectious virus and viral RNA shedding during acute infection through daily longitudinal sampling of 60 individuals for up to 14 days. By fitting mechanistic models, we directly estimated viral expansion and clearance rates, and overall infectiousness for each individual. Significant person-to-person variation in infectious virus shedding suggests that individual-level heterogeneity in viral dynamics contributes to superspreading. Viral genome loads often peaked days earlier in saliva than in nasal swabs, indicating strong tissue compartmentalization and suggesting that saliva may serve as a superior sampling site for early detection of infection. Viral loads and clearance kinetics of Alpha (B.1.1.7) and previously circulating non-variant of concern viruses were mostly indistinguishable, indicating that the enhanced transmissibility of this variant cannot be simply explained by higher viral loads or delayed clearance. These results provide a high-resolution portrait of SARS-CoV-2 infection dynamics and implicate individual-level heterogeneity in infectiousness in superspreading.
Background Serial screening is critical for restricting spread of SARS-CoV-2 by facilitating the timely identification of infected individuals to interrupt transmission chains. The variation in sensitivity of different diagnostic tests at different stages of infection has not been well documented. Methods This is a longitudinal study of 43 adults newly infected with SARS-CoV-2. All participants provided daily samples for saliva and nasal swab RTqPCR, Quidel SARS Sofia antigen FIA, and live virus culture. Results We show that both RTqPCR and the Quidel SARS Sofia antigen FIA peak in sensitivity during the period in which live virus is detected in nasal swabs, but the sensitivity of RTqPCR tests rises more rapidly prior to this period. We also estimate the sensitivities of RTqPCR and antigen tests as a function of testing frequency. Conclusions RTqPCR tests are more effective than antigen tests at identifying infected individuals prior to or early during the infectious period and thus for minimizing forward transmission (given timely results reporting). All tests showed >98% sensitivity for identifying infected individuals if used at least every three days. Daily screening using antigen tests can achieve ~90% sensitivity for identifying infected individuals while they are viral culture positive.
The goal of the present study was to develop a porcine spinal cord injury (SCI) model, and to describe the neurological outcome and characterize the corresponding quantitative and qualitative histological changes at 4-9 months after injury. Adult Gottingen-Minnesota minipigs were anesthetized and placed in a spine immobilization frame. The exposed T12 spinal segment was compressed in a dorso-ventral direction using a 5-mmdiameter circular bar with a progressively increasing peak force (1.5, 2.0, or 2.5 kg) at a velocity of 3 cm/sec. During recovery, motor and sensory function were periodically monitored. After survival, the animals were perfusion fixed and the extent of local SCI was analyzed by (1) post-mortem MRI analysis of dissected spinal cords, (2) qualitative and quantitative analysis of axonal survival at the epicenter of injury, and (3) defining the presence of local inflammatory changes, astrocytosis, and schwannosis. Following 2.5-kg spinal cord compression the animals demonstrated a near complete loss of motor and sensory function with no recovery over the next 4-9 months. Those that underwent spinal cord compression with 2 kg force developed an incomplete injury with progressive partial neurological recovery characterized by a restricted ability to stand and walk. Animals injured with a spinal compression force of 1.5 kg showed near normal ambulation 10 days after injury. In fully paralyzed animals (2.5 kg), MRI analysis demonstrated a loss of spinal white matter integrity and extensive septal cavitations. A significant correlation between the magnitude of loss of small and medium-sized myelinated axons in the ventral funiculus and neurological deficits was identified. These data, demonstrating stable neurological deficits in severely injured animals, similarities of spinal pathology to humans, and relatively good post-injury tolerance of this strain of minipigs to spinal trauma, suggest that this model can successfully be used to study therapeutic interventions targeting both acute and chronic stages of SCI.
The global effort to vaccinate people against SARS-CoV-2 in the midst of an ongoing pandemic has raised questions about the nature of vaccine breakthrough infections and the potential for vaccinated individuals to transmit the virus. These questions have become even more urgent as new variants of concern with enhanced transmissibility, such as Delta, continue to emerge. To shed light on how vaccine breakthrough infections compare with infections in immunologically naive individuals, we examined viral dynamics and infectious virus shedding through daily longitudinal sampling in a small cohort of adults infected with SARS-CoV-2 at varying stages of vaccination. The durations of both infectious virus shedding and symptoms were significantly reduced in vaccinated individuals compared with unvaccinated individuals. We also observed that breakthrough infections are associated with strong tissue compartmentalization and are only detectable in saliva in some cases. These data indicate that vaccination shortens the duration of time of high transmission potential, minimizes symptom duration, and may restrict tissue dissemination.
What is already known about this topic? Diagnostic tests and sample types for SARS-CoV-2 vary in sensitivity across the infection period. What is added by this report? We show that both RTqPCR (from nasal swab and saliva) and the Quidel SARS Sofia FIA rapid antigen tests peak in sensitivity during the period in which live virus can be detected in nasal swabs, but that the sensitivity of RTqPCR tests rises more rapidly in the pre-infectious period. We also use empirical data to estimate the sensitivities of RTqPCR and antigen tests as a function of testing frequency. What are the implications for public health practice? RTqPCR tests will be more effective than rapid antigen tests at identifying infected individuals prior to or early during the infectious period and thus for minimizing forward transmission (provided results reporting is timely). All modalities, including rapid antigen tests, showed >94% sensitivity to detect infection if used at least twice per week. Regular surveillance/screening using rapid antigen tests 2-3 times per week can be an effective strategy to achieve high sensitivity (>95%) for identifying infected individuals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.