Eight common imidazolium based ionic liquids have been successfully evaporated in ultra-high vacuum, their vapours analysed by line of sight mass spectrometry and their heats (enthalpy) of vapourisation determined. They were found to evaporate as ion pairs, with heats of vapourisation which depend primarily on the coulombic interactions within the liquid phase and the gas phase ion pair. An electrostatic model is presented relating the heats of vapourisation to the molar volumes of the ionic liquids.
Ultra-high-vacuum (UHV)-based techniques can offer the scientist a tremendous amount of information about samples of interest. However, until recently the range of samples that could be routinely investigated using unmodified instrumentation was limited to solid samples and frozen solutions. In this paper we report the investigation of low-vapor-pressure, liquid samples using both X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry. We demonstrate the suitability of UHV techniques in the investigation of a range of room-temperature ionic liquids, offering the opportunity to measure high-quality solution-phase spectra using unmodified instrumentation.
Ionic liquid surfaces can become electrically charged during X-ray photoelectron spectroscopy experiments, due to the flux of photoelectrons leaving the surface. This causes a shift in the measured binding energies of X-ray photoelectron peaks that depends on the magnitude of the surface charging. Consequently, a charge correction method is required for ionic liquids. Here we demonstrate the nature and extent of surface charging in ionic liquids and model it using chronopotentiometry. We report the X-ray photoelectron spectra for a range of imidazolium based ionic liquids and investigate the use of long alkyl chains (C(n)H(2n+1), n ≥ 8) and the imidazolium nitrogen, both of which are part of the ionic liquid chemical structure, as internal references for charge correction. Accurate and reproducible binding energies are obtained which allow comparisons to be made across ionic liquid-based systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.