The effect of cell-to-cell contact on Ca2+ influx and secretory responses in the beta-cell line MIN6 was studied using MIN6 pseudoislets, which are three-dimensional islet-like cell aggregates that develop when MIN6 cells are cultured for 6-8 days on gelatin. The formation of pseudoislets is dependent on the Ca2+-dependent adhesion molecule E-cadherin (E-CAD), since the process can be inhibited by incubation in the absence of Ca2+ or in the presence of an anti-E-CAD antibody. Glucose and alpha-ketoisocaproic acid (KIC) evoked a Ca2+ influx in only a small fraction of the MIN6 monolayer cells, whereas >80% of cell groups within the pseudoislets responded to both nutrients. In contrast, changes in the intracellular free Ca2+ concentration ([Ca2+]i) were observed in all or most monolayer cells or pseudoislet cell groups in response to physical or pharmacological depolarizing stimuli. No significant increase in insulin release was observed from MIN6 monolayer cells in response to nutrient or nonnutrient insulin secretagogues. Conversely, pseudoislets were found to respond significantly to both nutrients and nonnutrients. These results suggest that close cell-to-cell contact improves the functional responsiveness of MIN6 cells and that pseudoislets may therefore serve as a useful research model in the study of beta-cell function.
OBJECTIVE-Somatostatin (SST) is secreted by islet ␦-cells and by extraislet neuroendocrine cells. SST receptors have been identified on ␣-and -cells, and exogenous SST inhibits insulin and glucagon secretion, consistent with a role for SST in regulating ␣-and -cell function. However, the specific intraislet function of ␦-cell SST remains uncertain. We have used Sst Ϫ/Ϫ mice to investigate the role of ␦-cell SST in the regulation of insulin and glucagon secretion in vitro and in vivo. RESEARCH DESIGN AND METHODS-Islet morphology wasassessed by histological analysis. Hormone levels were measured by radioimmunoassay in control and Sst Ϫ/Ϫ mice in vivo and from isolated islets in vitro. RESULTS-Islet size and organization did not differ between SstϪ/Ϫ and control islets, nor did islet glucagon or insulin content. Sst Ϫ/Ϫ mice showed enhanced insulin and glucagon secretory responses in vivo. In vitro stimulus-induced insulin and glucagon secretion was enhanced from perifused Sst Ϫ/Ϫ islets compared with control islets and was inhibited by exogenous SST in Sst Ϫ/Ϫ but not control islets. No difference in the switch-off rate of glucose-stimulated insulin secretion was observed between genotypes, but the cholinergic agonist carbamylcholine enhanced glucose-induced insulin secretion to a lesser extent in Sst Ϫ/Ϫ islets compared with controls. Glucose suppressed glucagon secretion from control but not Sst Ϫ/Ϫ islets.CONCLUSIONS-We suggest that ␦-cell SST exerts a tonic inhibitory influence on insulin and glucagon secretion, which may facilitate the islet response to cholinergic activation. In addition, ␦-cell SST is implicated in the nutrient-induced suppression of glucagon secretion. Diabetes 58:403-411, 2009
We previously reported that prenatal and suckling exposure to a maternal diet rich in animal fat leads to cardiovascular dysfunction in young adult rat offspring with subsequent development of dyslipidemia and hyperglycemia. We have further investigated glucose homeostasis in adult female offspring by euglycemic-hyperinsulinemic clamp and by dynamic assessment of glucose-stimulated insulin secretion in isolated, perifused pancreatic islet cells. Additionally, given the link between reduced mitochondrial DNA (mtDNA) content and the development of type 2 diabetes mellitus, we have measured mtDNA in organs from young adult animals. Sprague-Dawley rats were fed a diet rich in animal fat or normal chow throughout pregnancy and weaning. Infusion of insulin (5 mU.kg(-1).min(-1)) resulted in a higher steady-state plasma insulin concentration in 1-year-old offspring of fat-fed dams (OHF, n = 4) vs. offspring of control dams (OC, n = 4, P < 0.01). Glucose-stimulated insulin secretion in isolated islets from 9-mo-old OHF was significantly reduced compared with OC (n = 4, P < 0.05). Transmission electron micrography showed altered insulin secretory granule morphology in OHF pancreatic beta-cells. Kidney mtDNA was reduced in 3-mo-old OHF [16S-to-18S gene ratio: OC (n = 10) 1.05 +/- 0.19 vs. OHF (n = 10) 0.66 +/- 0.06, P < 0.05]. At 6 mo, gene chip microarray of OHF aorta showed reduced expression of the mitochondrial genome. Prenatal and suckling exposure to a diet rich in animal fat leads to whole body insulin resistance and pancreatic beta-cell dysfunction in adulthood, which is preceded by reduced tissue mtDNA content and altered mitochondrial gene expression.
Melatonin is known to inhibit insulin secretion from rodent beta-cells through interactions with cell-surface MT1 and/or MT2 receptors, but the function of this hormone in human islets of Langerhans is not known. In the current study, melatonin receptor expression by human islets was examined by reverse transcription-polymerase chain reaction (RT-PCR) and the effects of exogenous melatonin on intracellular calcium ([Ca2+]i) levels and islet hormone secretion were determined by single cell microfluorimetry and radioimmunoassay, respectively. RT-PCR amplifications indicated that human islets express mRNAs coding for MT1 and MT2 melatonin receptors, although MT2 mRNA expression was very low. Analysis of MT1 receptor mRNA expression at the single cell level indicated that it was expressed by human islet alpha-cells, but not by beta-cells. Exogenous melatonin stimulated increases in intracellular calcium ([Ca2+]i) in dissociated human islet cells, and stimulated glucagon secretion from perifused human islets. It also stimulated insulin secretion and this was most probably a consequence of glucagon acting in a paracrine fashion to stimulate beta-cells as the MT1 receptor was absent in beta-cells. Melatonin did not decrease 3', 5'-cyclic adenosine monophosphate (cyclic AMP) levels in human islets, but it inhibited cyclic AMP in the mouse insulinoma (MIN6) beta-cell line and it also inhibited glucose-stimulated insulin secretion from MIN6 cells. These data suggest that melatonin has direct stimulatory effects at human islet alpha-cells and that it stimulates insulin secretion as a consequence of elevated glucagon release. This study also indicates that the effects of melatonin are species-specific with primarily an inhibitory role in rodent beta-cells and a stimulatory effect in human islets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.