The association of hepatic mitochondrial function with insulin resistance and non-alcoholic fatty liver (NAFL) or steatohepatitis (NASH) remains unclear. This study applied high-resolution respirometry to directly quantify mitochondrial respiration in liver biopsies of obese insulin-resistant humans without (n = 18) or with (n = 16) histologically proven NAFL or with NASH (n = 7) compared to lean individuals (n = 12). Despite similar mitochondrial content, obese humans with or without NAFL had 4.3- to 5.0-fold higher maximal respiration rates in isolated mitochondria than lean persons. NASH patients featured higher mitochondrial mass, but 31%-40% lower maximal respiration, which associated with greater hepatic insulin resistance, mitochondrial uncoupling, and leaking activity. In NASH, augmented hepatic oxidative stress (H2O2, lipid peroxides) and oxidative DNA damage (8-OH-deoxyguanosine) was paralleled by reduced anti-oxidant defense capacity and increased inflammatory response. These data suggest adaptation of the liver ("hepatic mitochondrial flexibility") at early stages of obesity-related insulin resistance, which is subsequently lost in NASH.
Muscle insulin resistance is a key feature of obesity and type 2 diabetes and is strongly associated with increased intramyocellular lipid content and inflammation. However, the cellular and molecular mechanisms responsible for causing muscle insulin resistance in humans are still unclear. To address this question, we performed serial muscle biopsies in healthy, lean subjects before and during a lipid infusion to induce acute muscle insulin resistance and assessed lipid and inflammatory parameters that have been previously implicated in causing muscle insulin resistance. We found that acute induction of muscle insulin resistance was associated with a transient increase in total and cytosolic diacylglycerol (DAG) content that was temporally associated with protein kinase (PKC)θ activation, increased insulin receptor substrate (IRS)-1 serine 1101 phosphorylation, and inhibition of insulin-stimulated IRS-1 tyrosine phosphorylation and AKT2 phosphorylation. In contrast, there were no associations between insulin resistance and alterations in muscle ceramide, acylcarnitine content, or adipocytokines (interleukin-6, adiponectin, retinol-binding protein 4) or soluble intercellular adhesion molecule-1. Similar associations between muscle DAG content, PKCθ activation, and muscle insulin resistance were observed in healthy insulin-resistant obese subjects and obese type 2 diabetic subjects. Taken together, these data support a key role for DAG activation of PKCθ in the pathogenesis of lipid-induced muscle insulin resistance in obese and type 2 diabetic individuals.lipotoxicity | insulin signaling
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.