We propose the use of multiscale amplitude-modulation frequency-modulation (AM-FM) methods for discriminating between normal and pathological retinal images. The method presented in this paper is tested using standard images from the Early Treatment Diabetic Retinopathy Study (ETDRS). We use 120 regions of 40×40 pixels containing 4 types of lesions commonly associated with diabetic retinopathy (DR) and two types of normal retinal regions that were manually selected by a trained analyst. The region types included: microaneurysms, exudates, neovascularization on the retina, hemorrhages, normal retinal background, and normal vessels patterns. The cumulative distribution functions of the instantaneous amplitude, the instantaneous frequency magnitude, and the relative instantaneous frequency angle from multiple scales are used as texture features vectors. We use distance metrics between the extracted feature vectors to measure interstructure similarity. Our results demonstrate a statistical differentiation of normal retinal structures and pathological lesions based on AM-FM features. We further demonstrate our AM-FM methodology by applying it to classification of retinal images from the MESSIDOR database. Overall, the proposed methodology shows significant capability for use in automatic DR screening.
The optic disk (OD) center and margin are typically requisite landmarks in establishing a frame of reference for classifying retinal and optic nerve pathology. Reliable and efficient OD localization and segmentation are important tasks in automatic eye disease screening. This paper presents a new, fast, and fully automatic OD localization and segmentation algorithm developed for retinal disease screening. First, OD location candidates are identified using template matching. The template is designed to adapt to different image resolutions. Then, vessel characteristics (patterns) on the OD are used to determine OD location. Initialized by the detected OD center and estimated OD radius, a fast, hybrid level-set model, which combines region and local gradient information, is applied to the segmentation of the disk boundary. Morphological filtering is used to remove blood vessels and bright regions other than the OD that affect segmentation in the peripapillary region. Optimization of the model parameters and their effect on the model performance are considered. Evaluation was based on 1200 images from the publicly available MESSIDOR database. The OD location methodology succeeded in 1189 out of 1200 images (99% success). The average mean absolute distance between the segmented boundary and the reference standard is 10% of the estimated OD radius for all image sizes. Its efficiency, robustness, and accuracy make the OD localization and segmentation scheme described herein suitable for automatic retinal disease screening in a variety of clinical settings.
A computer-aided algorithm was trained to detect different types of pathologic retinal conditions. The cases of hard exudates within 1 disc diameter (DD) of the fovea (surrogate for CSME) were detected with very high accuracy (sensitivity = 1, specificity = 0.50), whereas mild nonproliferative DR was the most challenging condition (sensitivity = 0.92, specificity = 0.50). The algorithm was also tested on images with signs of AMD, achieving a performance of AUC of 0.84 (sensitivity = 0.94, specificity = 0.50).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.