Anthracyclin-treated tumor cells are particularly effective in eliciting an anticancer immune response, whereas other DNA-damaging agents such as etoposide and mitomycin C do not induce immunogenic cell death. Here we show that anthracyclins induce the rapid, preapoptotic translocation of calreticulin (CRT) to the cell surface. Blockade or knockdown of CRT suppressed the phagocytosis of anthracyclin-treated tumor cells by dendritic cells and abolished their immunogenicity in mice. The anthracyclin-induced CRT translocation was mimicked by inhibition of the protein phosphatase 1/GADD34 complex. Administration of recombinant CRT or inhibitors of protein phosphatase 1/GADD34 restored the immunogenicity of cell death elicited by etoposide and mitomycin C, and enhanced their antitumor effects in vivo. These data identify CRT as a key feature determining anticancer immune responses and delineate a possible strategy for immunogenic chemotherapy.
Both the pre-apoptotic exposure of calreticulin (CRT) and the post-apoptotic release of high-mobility group box 1 protein (HMGB1) are required for immunogenic cell death elicited by anthracyclins. Here, we show that both oxaliplatin (OXP) and cisplatin (CDDP) were equally efficient in triggering HMGB1 release. However, OXP, but not CDDP, stimulates pre-apoptotic CRT exposure in a series of murine and human colon cancer cell lines. Subcutaneous injection of OXP-treated colorectal cancer (CRC), CT26, cells induced an anticancer immune response that was reduced by short interfering RNAmediated depletion of CRT or HMGB1. In contrast, CDDP-treated CT26 cells failed to induce anticancer immunity, unless recombinant CRT protein was absorbed into the cells. CT26 tumors implanted in immunocompetent mice responded to OXP treatment in vivo, and this therapeutic response was lost when CRT exposure by CT26 cells was inhibited or when CT26 cells were implanted in immunodeficient mice. The knockout of toll-like receptor 4 (TLR4), the receptor for HMGB1, also resulted in a deficient immune response against OXP-treated CT26 cells. In patients with advanced (stage IV, Duke D) CRC, who received an OXP-based chemotherapeutic regimen, the loss-of-function allele of TLR4 (Asp299Gly in linkage disequilibrium with Thr399Ile, reducing its affinity for HMGB1) was as prevalent as in the general population. However, patients carrying the TLR4 loss-of-function allele exhibited reduced progression-free and overall survival, as compared with patients carrying the normal TLR4 allele. In conclusion, OXP induces immunogenic death of CRC cells, and this effect determines its therapeutic efficacy in CRC patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.