Mass exchange and mass loss in close binaries can significantly affect their evolution, but a complete self-consistent theory of these processes is still to be developed. Processes such as radiative shielding due to a hot-spot region, or a hydrodynamical interaction of different parts of the gas stream have been studied previously. In order to test the respective predictions, it is necessary to carry out detailed observations of binaries undergoing the largescale mass exchange, especially for those that are in the rapid transfer phase. β Lyr A is an archetype of such a system, having a long and rich observational history. Our goal for this first study is to quantitatively estimate the geometry and physical properties of the optically thick components, namely the Roche-lobe filling mass-losing star, and the accretion disk surrounding the mass-gaining star of β Lyr A. A series of continuum visible and NIR spectro-interferometric observations by the NPOI, CHARA/MIRC and VEGA instruments covering the whole orbit of β Lyr A acquired during a two-week campaign in 2013 were complemented with UBVR photometric observations acquired during a three-year monitoring of the system. We included NUV and FUV observations from OAO A-2, IUE, and Voyager satellites. All these observations were compared to a complex model of the system. It is based on the simple LTE radiative transfer code SHELLSPEC, which was substantially extended to compute all interferometric observables and to perform both global and local optimization of system parameters. Several shapes of the accretion disk were successfully tested -slab, wedge, and a disk with an exponential vertical profile -and the following properties were consistently found: the radius of the outer rim is 30.0 ± 1.0 R , the semithickness of the disk 6.5 ± 1.0 R , and the binary orbital inclination i = 93.5 ± 1.0 deg. The temperature profile is a power-law or a steady-disk in case of the wedge geometry. The properties of the accretion disk indicate that it cannot be in a vertical hydrostatic equilibrium, which is in accord with the ongoing mass transfer. The hot spot was also detected in the continuum but is interpreted as a hotter part of the accretion disk illuminated by the donor. As a by-product, accurate kinematic and radiative properties of β Lyr B were determined.
Context. The study of apsidal motion in detached eclipsing binary systems is known to be an important source of information about stellar internal structure as well as the possibility of verifying of General Relativity outside the Solar System. Aims. As part of the long-term Ondřejov and Ostrava observational projects, we aim to measure precise times of minima for eccentric eclipsing binaries, needed for the accurate determination of apsidal motion, providing a suitable test of the effects of General Relativity. Methods. About seventy new times of minimum light recorded with photoelectric or CCD photometers were obtained for ten eccentric-orbit eclipsing binaries with significant relativistic apsidal motion. Their O-C diagrams were analysed using all reliable timings found in the literature, and new or improved elements of apsidal motion were obtained. Results. We confirm very long periods of apsidal motion for all systems. For BF Dra and V1094 Tau, we present the first apsidalmotion solution. The relativistic effects are dominant, representing up to 100% of the total observable apsidal-motion rate in several systems. The theoretical and observed values of the internal structure constant k 2 were compared for systems with lower relativistic contribution. Using the light-time effect solution, we predict a faint third component for V1094 Tau orbiting with a short period of about 8 years.
We analysed photometric time series of the active, semidetached Algol-type system RZ Cas obtained in 1999-2009, in order to search for seasonal and short-term variations in the oscillation spectrum of RZ Cas A. The orbital period shows ±1 s cyclic variations on timescales of 6-9 years. We detected six low-degree p-mode oscillations with periods between 22.3 and 26.22 min and obtained safe mode identifications using the periodic spatial filter method. The amplitudes and frequencies of all modes vary. We tested and confirm the hypothesis that rapid variations in the pulsation spectrum of the mass-accreting component and rapid increases in the orbital period are driven by high mass transfer and accretion outbursts caused by the cyclic magnetic activity of the Roche lobe-filling donor star. Two rapid pulsation-amplitude decays observed in 2001 and 2009 can be explained by high-mass transfer events separated by the duration of the last 9-yr long magnetic cycle. We also tested and confirm the hypothesis of an acceleration of the outer envelope of the pulsating component. We discovered synchronous, modal m-dependent variations in the frequencies of three identified modes, in good agreement with results of our mode identification using the periodic spatial filter method. We suggest that m-dependent pulsation frequency variations are caused via the Doppler-effect by variations of the rotation speed of the outer envelope of the pulsating gainer. With this method, we obtained the first asteroseismic detection and accurate measurement of the accretion driven acceleration of the outer envelope of the massaccreting component of an Algol-type star.
A new catalog of visual double systems containing eclipsing binaries as one component is presented.The main purpose of this catalog is to compile a complete list of all known multiples of this variety, both for current analysis and to highlight those in need of additional observations. All available photometric and astrometric data were analyzed, resulting in new orbits for eight systems and new times of minimum light for a number of the eclipsing binaries. Some of the systems in the catalog have acceptable solutions for their visual orbits, although in most cases their orbital periods are too long for simultaneous analysis. Also included, however, are a number of systems which currently lack an orbital solution but which may be suitable for simultaneous analysis in the future.
Context. Rapid advancements in light-curve and radial-velocity curve modelling, as well as improvements in the accuracy of observations, allow more stringent tests of the theory of stellar evolution. Binaries with rapid apsidal advance are particularly useful in this respect since the internal structure of the stars can also be tested. Aims. Thanks to its long and rich observational history and rapid apsidal motion, the massive eclipsing binary Y Cyg represents one of the cornerstones of critical tests of stellar evolutionary theory for massive stars. Nevertheless, the determination of the basic physical properties is less accurate than it could be given the existing number of spectral and photometric observations. Our goal is to analyse all these data simultaneously with the new dedicated series of our own spectral and photometric observations from observatories widely separated in longitude. Methods. We obtained new series of UBV observations at three observatories separated in local time to obtain complete light curves of Y Cyg for its orbital period close to 3 days. This new photometry was reduced and carefully transformed to the standard UBV system using the HEC22 program. We also obtained new series of red spectra secured at two observatories and re-analysed earlier obtained blue electronic spectra. Reduction of the new spectra was carried out in the IRAF and SPEFO programs. Orbital elements were derived independently with the FOTEL and PHOEBE programs and via disentangling with the program KOREL. The final combined solution was obtained with the program PHOEBE. Results. Our analyses provide the most accurate value of the apsidal period of (47.805 ± 0.030) yr published so far and the following physical elements: M 1 = 17.72 ± 0.35 M , M 2 = 17.73 ± 0.30 M , R 1 = 5.785 ± 0.091 R , and R 2 = 5.816 ± 0.063 R . The disentangling thus resulted in the masses, which are somewhat higher than all previous determinations and virtually the same for both stars, while the light curve implies a slighly higher radius and luminosity for star 2. The above empirical values imply the logarithm of the internal structure constant log k 2 = −1.937. A comparison with Claret's stellar interior models implies an age close to 2 × 10 6 yr for both stars. Conclusions. The claimed accuracy of modern element determination of 1-2 per cent still seems a bit too optimistic and obtaining new high-dispersion and high-resolution spectra is desirable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.