Recently, the presence of lymphatics has been demonstrated and characterized in the dura mater, which is in contrast to the well-accepted view indicating the lack of a classical lymphatic drainage system of the central nervous system (CNS). Moreover, the role of meningeal lymphatics in the pathogenesis of Alzheimer's disease and multiple sclerosis was suggested. However, the possible regulators of the developmental program and function of meningeal lymphatics remain unclear. Here, we aimed at characterizing the lymph flow dependence of the developmental program and function of the meningeal lymphatics. First, we demonstrated that lymphatics present in the dura mater are involved in the uptake and transport of macromolecules from the CNS. Meningeal lymphatics develop during the postnatal period which process involves the maturation of the vessels. The formation of mature meningeal lymphatics coincides with the increase of the drainage of macromolecules from the CNS to the deep cervical lymph nodes. Importantly, the structural remodeling and maturation of meningeal lymphatics is impaired in Plcγ 2 −/− mice with reduced lymph flow. Furthermore, macromolecule uptake and transport by the meningeal lymphatics are also affected in Plcγ 2 −/− mice. Collectively, lymph flow-induced mechanical forces are required for the postnatal formation of mature and functional meningeal lymphatic vessels. Defining lymph flow-dependence of the development and function of meningeal lymphatics may lead to better understanding of the pathogenesis of neurological diseases including Alzheimer's disease and multiple sclerosis.
Syk is a non-receptor tyrosine kinase critically involved in signaling by various immunoreceptors including B-cell-receptors and activating Fc-receptors. We have previously shown that Syk also mediates immunoreceptor-like signals required for the in vitro development and function of osteoclasts. However, the perinatal lethality of Syk −/− mice precluded the analysis of the role of Syk in in vivo bone metabolism. To overcome that problem, we generated mice with osteoclast-specific ( Syk Δ OC ) or hematopoietic ( Syk Δ Haemo ) Syk deficiency by conditional deletion of Syk using Cre recombinase expressed under the control of the Ctsk or Vav1 promoter, respectively. Micro-CT analysis revealed increased bone trabecular density in both Syk Δ OC and Syk Δ Haemo mice, although hematopoietic Syk deficiency caused a more severe phenotype than osteoclast-specific Syk deficiency. Osteoclast-specific Syk deficiency reduced, whereas hematopoietic Syk deficiency completely blocked in vitro development of osteoclasts. Both interventions inhibited the resorptive activity of osteoclasts and osteoclast-specific gene expression. Kinetic analysis of Syk protein levels, Cre expression and the genomic deletion of the Syk flox allele revealed complete and early deletion of Syk from Syk Δ Haemo osteoclasts whereas Syk was incompletely deleted at a later stage of osteoclast development from Syk Δ OC cultures. Those results provide an explanation for the in vivo and in vitro difference between the Syk Δ OC and Syk Δ Haemo mutant strains and suggest late activation of, and incomplete target gene deletion upon, osteoclast-specific Cre expression driven by the Ctsk promoter. Taken together, our results indicate that Syk plays an indispensable role in osteoclast-mediated in vivo bone resorption and suggest that Syk-specific inhibitors may provide therapeutic benefit in inflammatory and other diseases characterized by excessive osteoclast-mediated bone resorption.
Lack or dysfunction of the lymphatics leads to secondary lymphedema formation that seriously reduces the function of the affected organs and results in degradation of quality of life. Currently, there is no definitive treatment option for lymphedema. Here, we utilized nucleoside-modified mRNA encapsulated in lipid nanoparticles (LNPs) encoding murine Vascular Endothelial Growth Factor C (VEGFC) to stimulate lymphatic growth and function and reduce experimental lymphedema in mouse models. We demonstrated that administration of a single low-dose of VEGFC mRNA-LNPs induced durable, organ-specific lymphatic growth and formation of a functional lymphatic network. Importantly, VEGFC mRNA-LNP treatment reversed experimental lymphedema by restoring lymphatic function without inducing any obvious adverse events. Collectively, we present a novel application of the nucleoside-modified mRNA-LNP platform, describe a model for identifying the organ-specific physiological and pathophysiological roles of the lymphatics, and propose an efficient and safe treatment option that may serve as a novel therapeutic tool to reduce lymphedema.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.