Highlights
Typically encountered CT exposure variations result in radiomics values distortion.
Proposed correction method suppresses the non-tumor related variation in radiomics.
The clinical relevance was shown using a 221 lung cancer patient cohort.
Prediction modelling with radiomics is a rapidly developing research topic that requires access to vast amounts of imaging data. Methods that work on decentralized data are urgently needed, because of concerns about patient privacy. Previously published computed tomography medical image sets with gross tumour volume (GTV) outlines for non-small cell lung cancer have been updated with extended follow-up. In a previous study, these were referred to as Lung1 (n = 421) and Lung2 (n = 221). The Lung1 dataset is made publicly accessible via The Cancer Imaging Archive (TCIA; https://www.cancerimagingarchive.net). We performed a decentralized multi-centre study to develop a radiomic signature (hereafter “ZS2019”) in one institution and validated the performance in an independent institution, without the need for data exchange and compared this to an analysis where all data was centralized. The performance of ZS2019 for 2-year overall survival validated in distributed radiomics was not statistically different from the centralized validation (AUC 0.61 vs 0.61; p = 0.52). Although slightly different in terms of data and methods, no statistically significant difference in performance was observed between the new signature and previous work (c-index 0.58 vs 0.65; p = 0.37). Our objective was not the development of a new signature with the best performance, but to suggest an approach for distributed radiomics. Therefore, we used a similar method as an earlier study. We foresee that the Lung1 dataset can be further re-used for testing radiomic models and investigating feature reproducibility.
Quantitative imaging features (radiomics) extracted from apparent diffusion coefficient (ADC) maps of rectal cancer patients can provide additional information to support treatment decision. Most available radiomic computational packages allow extraction of hundreds to thousands of features. However, two major factors can influence the reproducibility of radiomic features: interobserver variability, and imaging filtering applied prior to features extraction. In this exploratory study we seek to determine to what extent various commonly-used features are reproducible with regards to the mentioned factors using ADC maps from two different clinics (56 patients). Features derived from intensity distribution histograms are less sensitive to manual tumour delineation differences, noise in ADC images, pixel size resampling and intensity discretization. Shape features appear to be strongly affected by delineation quality. On the whole, textural features appear to be poorly or moderately reproducible with respect to the image pre-processing perturbations we reproduced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.