The location of the Opportunity landing site was determined to better than 10-m absolute accuracy from analyses of radio tracking data. We determined Rover locations during traverses with an error as small as several centimeters using engineering telemetry and overlapping images. Topographic profiles generated from rover data show that the plains are very smooth from meter- to centimeter-length scales, consistent with analyses of orbital observations. Solar cell output decreased because of the deposition of airborne dust on the panels. The lack of dust-covered surfaces on Meridiani Planum indicates that high velocity winds must remove this material on a continuing basis. The low mechanical strength of the evaporitic rocks as determined from grinding experiments, and the abundance of coarse-grained surface particles argue for differential erosion of Meridiani Planum.
The Mars Phoenix Lander was equipped with a 2.4 m Robotic Arm (RA) with an Icy Soil Acquisition Device capable of excavating trenches in soil deposits, grooming hard icy soil surfaces with a scraper blade, and acquiring icy soil samples using a rasp tool. A camera capable of imaging the scoop interior and a thermal and electrical conductivity probe were also included on the RA. A dozen trench complexes were excavated at the northern plains landing site and 31 samples (including water‐ice‐bearing soils) were acquired for delivery to instruments on the Lander during the 152 sol mission. Deliveries included sprinkling material from several centimeters height to break up cloddy soils on impact with instrument portals. Excavations were done on the side of the Humpty Dumpty and the top of the Wonderland polygons, and in nearby troughs. Resistive forces encountered during backhoe operations show that soils above the 3–5 cm deep icy soil interfaces are stronger with increasing depth. Further, soils are similar in appearance and properties to the weakly cohesive crusty and cloddy soils imaged and excavated by the Viking Lander 2, which also landed on the northern plains. Adsorbed H2O is inferred to be responsible for the variable nature and cohesive strength of the soils. Backhoe blade chatter marks on excavated icy soil surfaces, combined with rasp motor currents, are consistent with laboratory experiments using grain‐supported icy soil deposits, as is the relatively rapid decrease in icy soil strength over time as the ice sublimated on Mars.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.