Background Despite a similar histologic appearance, upper tract urothelial carcinoma (UTUC) and urothelial carcinoma of the bladder (UCB) tumors have distinct epidemiologic and clinicopathologic differences. Objective To investigate whether the differences between UTUC and UCB result from intrinsic biological diversity. Design, setting, and participants Tumor and germline DNA from patients with UTUC (n = 83) and UCB (n = 102) were analyzed using a custom next-generation sequencing assay to identify somatic mutations and copy-number alterations in 300 cancer-associated genes. Outcome measurements and statistical analysis We described co-mutation patterns and copy-number alterations in UTUC. We also compared mutation frequencies in high-grade UTUC (n = 59) and high-grade UCB (n = 102). Results and limitations Comparison of high-grade UTUC and UCB revealed significant differences in the prevalence of somatic alterations. Alterations more common in high-grade UTUC included fibroblast growth factor receptor 3 (FGFR3; 35.6% vs 21.6%; p = 0.065), Harvey rat sarcoma viral oncogene homolog (HRAS; 13.6% vs 1.0%; p = 0.001), and cyclin-dependent kinase inhibitor 2B (p15, inhibits CDK4) (CDKN2B; 15.3% vs 3.9%; p = 0.016). Genes less frequently mutated in high-grade UTUC included tumor protein p53 (TP53; 25.4% vs 57.8%; p < 0.001), retinoblastoma 1 (RB1; 0.0% vs 18.6%; p < 0.001), and AT rich interactive domain 1A (SWI-like) (ARID1A; 13.6% vs 27.5%; p = 0.050). Because our assay was restricted to genomic alterations in a targeted panel, rare mutations and epigenetic changes were not analyzed. Conclusions High-grade UTUC tumors display a spectrum of genetic alterations similar to high-grade UCB. However, there were significant differences in the prevalence of several recurrently mutated genes including HRAS, TP53, and RB1. As relevant targeted inhibitors are being developed and tested, these results may have important implications for the site-specific management of patients with urothelial carcinoma. Patient summary Comparison of next-generation sequencing of upper tract urothelial carcinoma (UTUC) with urothelial bladder cancer identified that similar mutations were present in both cancer types but at different frequencies, indicating a potential need for unique management strategies. UTUC tumors were found to have a high rate of mutations that could be targeted with novel therapies.
Our findings suggest that although BMI is not an independent prognostic factor for CSM after controlling for stage and grade, tumors developing in an obesogenic environment may be more indolent.
A B S T R A C T PurposeWe sought to define the prevalence and co-occurrence of actionable genomic alterations in patients with high-grade bladder cancer to serve as a platform for therapeutic drug discovery. Patients and MethodsAn integrative analysis of 97 high-grade bladder tumors was conducted to identify actionable drug targets, which are defined as genomic alterations that have been clinically validated in another cancer type (eg, BRAF mutation) or alterations for which a selective inhibitor of the target or pathway is under clinical investigation. DNA copy number alterations (CNAs) were defined by using array comparative genomic hybridization. Mutation profiling was performed by using both mass spectroscopy-based genotyping and Sanger sequencing. ResultsSixty-one percent of tumors harbored potentially actionable genomic alterations. A core pathway analysis of the integrated data set revealed a nonoverlapping pattern of mutations in the RTK-RAS-RAF and phosphoinositide 3-kinase/AKT/mammalian target of rapamycin pathways and regulators of G 1 -S cell cycle progression. Unsupervised clustering of CNAs defined two distinct classes of bladder tumors that differed in the degree of their CNA burden. Integration of mutation and copy number analyses revealed that mutations in TP53 and RB1 were significantly more common in tumors with a high CNA burden (P Ͻ .001 and P Ͻ .003, respectively). ConclusionHigh-grade bladder cancer possesses substantial genomic heterogeneity. The majority of tumors harbor potentially tractable genomic alterations that may predict for response to target-selective agents. Given the genomic diversity of bladder cancers, optimal development of target-specific agents will require pretreatment genomic characterization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.