A software system to provide intuitive navigation for MRI-guided robotic transperineal prostate therapy is presented. In the system, the robot control unit, the MRI scanner, and the open-source navigation software are connected together via Ethernet to exchange commands, coordinates, and images using an open network communication protocol, OpenIGTLink. The system has six states called "workphases" that provide the necessary synchronization of all components during each stage of the clinical workflow, and the user interface guides the operator linearly through these workphases. On top of this framework, the software provides the following features for needle guidance: interactive target planning; 3D image visualization with current needle position; treatment monitoring through real-time MR images of needle trajectories in the prostate. These features are supported by calibration of robot and image coordinates by fiducial-based registration. Performance tests show that the registration error of the system was 2.6 mm within the prostate volume. Registered real-time 2D images were displayed 1.97 s after the image location is specified.
Abstract. Minimally invasive laparoscopic surgery is widely used for the treatment of cancer and other diseases. During the procedure, gas insufflation is used to create space for laparoscopic tools and operation. Insufflation causes the organs and abdominal wall to deform significantly. Due to this large deformation, the benefit of surgical plans, which are typically based on pre-operative images, is limited for real time navigation. In some recent work, intra-operative images, such as cone-beam CT or interventional CT, are introduced to provide updated volumetric information after insufflation. Other works in this area have focused on simulation of gas insufflation and exploited only the pre-operative images to estimate deformation. This paper proposes a novel registration method for pre-and intra-operative 3D image fusion for laparoscopic surgery. In this approach, the deformation of pre-operative images is driven by a biomechanical model of the insufflation process. The proposed method was validated by five synthetic data sets generated from clinical images and three pairs of in vivo CT scans acquired from two pigs, before and after insufflation. The results show the proposed method achieved high accuracy for both the synthetic and real insufflation data.
2D/3D image registration to align a 3D volume and 2D X-ray images is a challenging problem due to its ill-posed nature and various artifacts presented in 2D X-ray images. In this paper, we propose a multi-agent system with an auto attention mechanism for robust and efficient 2D/3D image registration. Specifically, an individual agent is trained with dilated Fully Convolutional Network (FCN) to perform registration in a Markov Decision Process (MDP) by observing a local region, and the final action is then taken based on the proposals from multiple agents and weighted by their corresponding confidence levels. The contributions of this paper are threefold. First, we formulate 2D/3D registration as a MDP with observations, actions, and rewards properly defined with respect to X-ray imaging systems. Second, to handle various artifacts in 2D X-ray images, multiple local agents are employed efficiently via FCN-based structures, and an auto attention mechanism is proposed to favor the proposals from regions with more reliable visual cues. Third, a dilated FCN-based training mechanism is proposed to significantly reduce the Degree of Freedom in the simulation of registration environment, and drastically improve training efficiency by an order of magnitude compared to standard CNN-based training method. We demonstrate that the proposed method achieves high robustness on both spine cone beam Computed Tomography data with a low signal-to-noise ratio and data from minimally invasive spine surgery where severe image artifacts and occlusions are presented due to metal screws and guide wires, outperforming other state-of-the-art methods (single agent-based and optimization-based) by a large margin.
Augmented reality for soft tissue laparoscopic surgery is a growing topic of interest in the medical community and has potential application in intra-operative planning and image guidance. Delivery of such systems to the operating room remains complex with theoretical challenges related to tissue deformation and the practical limitations of imaging equipment. Current research in this area generally only solves part of the registration pipeline or relies on fiducials, manual model alignment or assumes that tissue is static. This paper proposes a novel augmented reality framework for intra-operative planning: the approach co-registers pre-operative CT with stereo laparoscopic images using cone beam CT and fluoroscopy as bridging modalities. It does not require fiducials or manual alignment and compensates for tissue deformation from insufflation and respiration while allowing the laparoscope to be navigated. The paper's theoretical and practical contributions are validated using simulated, phantom, ex vivo, in vivo and non medical data.
Magnetic Resonance Imaging (MRI) has potential to be a superior medical imaging modality for guiding and monitoring prostatic interventions. The strong magnetic field prevents the use of conventional mechatronics and the confined physical space makes it extremely challenging to access the patient. We have designed a robotic assistant system that overcomes these difficulties and promises safe and reliable intra-prostatic needle placement inside closed high-field MRI scanners. The robot performs needle insertion under real-time 3T MR image guidance; workspace requirements, MR compatibility, and workflow have been evaluated on phantoms. The paper explains the robot mechanism and controller design and presents results of preliminary evaluation of the system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.