Large-scale cyber-physical systems such as manufacturing lines generate vast amounts of data to guarantee precise control of their machinery. Visions such as the Industrial Internet of Things aim at making this data available also to computation systems outside the lines to increase productivity and product quality. However, rising amounts and complexities of data and control decisions push existing infrastructure for data transmission, storage, and processing to its limits. In this paper, we exemplarily study a fine blanking line which can produce up to 6.2 Gbit/s worth of data to showcase the extreme requirements found in modern manufacturing. We consequently propose integrated data processing which keeps inherently local and small-scale tasks close to the processes while at the same time centralizing tasks relying on more complex decision procedures and remote data sources. Our approach thus allows for both maintaining control of field-level processes and leveraging the benefits of "big data" applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.