The reasons why tumor cells metastasize to bone remain obscure. There is some evidence to support the theory that integrins (acting as cell surface adhesion receptors) play a role in mediating metastasis in certain organs. Here, we report that overexpression of a functionally active integrin alpha(v)b3 in Chinese hamster ovary (CHO) tumor cells drastically increased the incidence, number, and area of bone metastases in nude mice compared with those observed in mock-transfected CHO cells (CHO dhfr+) or in CHO cells expressing a functionally inactive integrin alpha(v)b3 (CHO beta3Delta744). Moreover, a breast cancer cell line (B02) established from bone metastases caused by MDA-MB-231 cells constitutively overexpressed integrin alpha(v)b3, whereas the cell surface expression level of other integrins remained unchanged. In vivo, the extent of bone metastases in B02-bearing mice was significantly increased compared with that of MDA-MB-231-bearing mice. In vitro, B02 cells and CHO cells expressing a functionally active integrin alpha(v)b3 exhibited substantially increased invasion of and adhesion to mineralized bone, bone sialoprotein, and collagen compared with those found with MDA-MB-231, CHO dhfr+, and CHO beta3Delta744 cells, respectively. Overall, our findings suggest that integrin alpha(v)b3 expression in tumor cells accelerates the development of osteolytic lesions, presumably through increased invasion of and adhesion to bone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.