The first recorded human outbreak of Ebola virus was in 1976, but the wild reservoir of this virus is still unknown. Here we test for Ebola in more than a thousand small vertebrates that were collected during Ebola outbreaks in humans and great apes between 2001 and 2003 in Gabon and the Republic of the Congo. We find evidence of asymptomatic infection by Ebola virus in three species of fruit bat, indicating that these animals may be acting as a reservoir for this deadly virus.
An animal mortality monitoring network in Gabon and the Republic of Congo has demonstrated potential to predict and possibly prevent human Ebola outbreaks.
Over the last 30 years, Zaire ebolavirus (ZEBOV), a virus highly pathogenic for humans and wild apes, has emerged repeatedly in Central Africa. Thus far, only a few virus isolates have been characterized genetically, all belonging to a single genetic lineage and originating exclusively from infected human patients. Here, we describe the first ZEBOV sequences isolated from great ape carcasses in the Gabon/Congo region that belong to a previously unrecognized genetic lineage. According to our estimates, this lineage, which we also encountered in the two most recent human outbreaks in the Republic of the Congo in 2003 and 2005, diverged from the previously known viruses around the time of the first documented human outbreak in 1976. These results suggest that virus spillover from the reservoir has occurred more than once, as predicted by the multiple emergence hypothesis. However, the young age of both ZEBOV lineages and the spatial and temporal sequence of outbreaks remain at odds with the idea that the virus simply emerged from a long-established and widespread reservoir population. Based on data from two ZEBOV genes, we also demonstrate, within the family
Filoviridae
, recombination between the two lineages. According to our estimates, this event took place between 1996 and 2001 and gave rise to a group of recombinant viruses that were responsible for a series of outbreaks in 2001–2003. The potential for recombination adds an additional level of complexity to unraveling and potentially controlling the emergence of ZEBOV in humans and wildlife species.
This study demonstrates the usefulness of oral fluid samples for the investigation of Ebola outbreaks, but further development in antibodies and antigen detection in oral fluid specimens is needed before these samples are used for filovirus surveillance activities in Africa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.