The size of a planet is an observable property directly connected to the physics of its formation and evolution. We used precise radius measurements from the California-Kepler Survey (CKS) to study the size distribution of 2025 Kepler planets in fine detail. We detect a factor of ≥2 deficit in the occurrence rate distribution at 1.5-2.0 R ⊕ . This gap splits the population of close-in (P < 100 d) small planets into two size regimes: R P < 1.5 R ⊕ and R P = 2.0-3.0 R ⊕ , with few planets in between. Planets in these two regimes have nearly the same intrinsic frequency based on occurrence measurements that account for planet detection efficiencies. The paucity of planets between 1.5 and 2.0 R ⊕ supports the emerging picture that close-in planets smaller than Neptune are composed of rocky cores measuring 1.5 R ⊕ or smaller with varying amounts of low-density gas that determine their total sizes.
No abstract
Prepared by the LSST Science Collaborations, with contributions from the LSST Project. PrefaceMajor advances in our understanding of the Universe over the history of astronomy have often arisen from dramatic improvements in our ability to observe the sky to greater depth, in previously unexplored wavebands, with higher precision, or with improved spatial, spectral, or temporal resolution. Aided by rapid progress in information technology, current sky surveys are again changing the way we view and study the Universe, and the next-generation instruments, and the surveys that will be made with them, will maintain this revolutionary progress. Substantial progress in the important scientific problems of the next decade (determining the nature of dark energy and dark matter, studying the evolution of galaxies and the structure of our own Milky Way, opening up the time domain to discover faint variable objects, and mapping both the inner and outer Solar System) all require wide-field repeated deep imaging of the sky in optical bands.The wide-fast-deep science requirement leads to a single wide-field telescope and camera which can repeatedly survey the sky with deep short exposures. The Large Synoptic Survey Telescope (LSST), a dedicated telecope with an effective aperture of 6.7 meters and a field of view of 9.6 deg 2 , will make major contributions to all these scientific areas and more. It will carry out a survey of 20,000 deg 2 of the sky in six broad photometric bands, imaging each region of sky roughly 2000 times (1000 pairs of back-to-back 15-sec exposures) over a ten-year survey lifetime.The LSST project will deliver fully calibrated survey data to the United States scientific community and the public with no proprietary period. Near real-time alerts for transients will also be provided worldwide. A goal is worldwide participation in all data products. The survey will enable comprehensive exploration of the Solar System beyond the Kuiper Belt, new understanding of the structure of our Galaxy and that of the Local Group, and vast opportunities in cosmology and galaxy evolution using data for billions of distant galaxies. Since many of these science programs will involve the use of the world's largest non-proprietary database, a key goal is maximizing the usability of the data. Experience with previous surveys is that often their most exciting scientific results were unanticipated at the time that the survey was designed; we fully expect this to be the case for the LSST as well.The purpose of this Science Book is to examine and document in detail science goals, opportunities, and capabilities that will be provided by the LSST. The book addresses key questions that will be confronted by the LSST survey, and it poses new questions to be addressed by future study. It contains previously available material (including a number of White Papers submitted to the ASTRO2010 Decadal Survey) as well as new results from a year-long campaign of study and evaluation. This book does not attempt to be complete; there are many ...
In the ΛCDM paradigm, the Galactic stellar halo is predicted to harbor the accreted debris of smaller systems. To identify these systems, the H3 Spectroscopic Survey, combined with Gaia, is gathering 6D phase-space and chemical information in the distant Galaxy. Here we present a comprehensive inventory of structure within 50 kpc from the Galactic center using a sample of 5684 giants atWe identify known structures including the high-α disk, the in situ halo (disk stars heated to eccentric orbits), Sagittarius (Sgr), Gaia-Sausage-Enceladus (GSE), the Helmi Streams, Sequoia, and Thamnos. Additionally, we identify the following new structures: (i) Aleph ([Fe/H]=−0.5), a low-eccentricity structure that rises a surprising 10 kpc off the plane, (ii) and (iii) Arjuna ([Fe/H]=−1.2) and I'itoi ([Fe/H]<−2), which comprise the high-energy retrograde halo along with Sequoia, and (iv) Wukong ([Fe/H]=−1.6), a prograde phase-space overdensity chemically distinct from GSE. For each structure, we provide [Fe/H], [α/Fe], and orbital parameters. Stars born within the Galaxy are a major component at | | Z 2 kpc (≈60%), but their relative fraction declines sharply to 5% past 15 kpc. Beyond 15 kpc, >80% of the halo is built by two massive (M å ∼10 8 -10 9 M e ) accreted dwarfs: GSE ([Fe/H]=−1.2) within 25 kpc and Sgr ([Fe/H]=−1.0) beyond 25 kpc. This explains the relatively high overall metallicity of the halo ([Fe/H]≈−1.2). We attribute 95% of the sample to one of the listed structures, pointing to a halo built entirely from accreted dwarfs and heating of the disk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.