Evidences that higher natural antioxidant (NA) intake provides protection against cardiovascular disease (CVD) are contradictory. Oxidative-induced endothelial cells (ECs) injury is the key step in the onset and progression of CVD and for this reason the cellular responses resulting from NA interaction with ECs are actively investigated. This study was designed to investigate the direct impact of different naturally occurring antioxidants on the intracellular ROS levels in cultured human ECs. NA-induced redox changes, in terms of modulation of the intracellular ROS levels, were assessed by using the ROS fluorescent probe 2',7'-dichlorodihydrofluorescein diacetate (H2DCF-DA). While caffeic and caftaric acid exerted an anti-oxidant effect, both coumaric acid and resveratrol were pro-oxidant. Anti- and pro-oxidant effects of the tested compounds were concentration dependent, showing the induction or the tendency to promote a pro-oxidant outcome with increasing concentrations. Interestingly, the anti- and pro-oxidant behavior of chlorogenic and ferulic acid was dependent on the basal intracellular redox state. Our data indicate that naturally occurring antioxidants are able to induce a rapid modification of the intracellular ROS levels in human ECs, which is dependent on both the applied concentration and the intracellular redox state.
Evidence that higher natural antioxidants (NA) intake provides cardiovascular protection is contradictory. The endothelium plays a pivotal role in cardiovascular homeostasis, and for this reason, the molecular events resulting from the interaction of NA with endothelial cells (ECs) are actively investigated. Here, we show that moderately high doses of coumaric acid (CA) induced intracellular reactive oxygen species (ROS) production, mitochondrial membrane depolarization and ECs death. Treatment of ECs with cyclosporine A, a mitochondrial permeability transition pore inhibitor, prevented the oxidative-mediated cell damage indicating mitochondrial involvement in CA-induced ECs impairment. CA-induced intracellular ROS generation was counteracted by the specific cytochrome P450 (CYP) 2C9 inhibitor sulfaphenazole (SPZ). SPZ also prevented CA-induced mitochondrial membrane depolarization and ECs death, implicating CYP2C9 in mediating the cellular response upon CA treatment. Our results indicate that moderately high doses of CA can promote CYP2C9-mediated oxidative stress eliciting mitochondrial-dependent ECs death and may pave the way toward mechanistic insight into NA effects on cardiovascular cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.