By combining living anionic polymerization and hydrosilylation, densely grafted bottlebrush polymers with controlled spacing of branch points are prepared. Dimethyl(4-vinylphenyl)silane and dimethyl(4-(1-phenylvinyl)phenyl)silane are anionically (co)polymerized to synthesize uniform, alternating, and gradient in-chain silyl-hydride (Si-H) functionalized backbones. The spacing of branch points is controlled effectively by regulating the distribution of Si-H groups along the backbones. Three backbones with a similar number of Si-H groups but variable distributions are used to synthesize corresponding bottlebrush polymers via hydrosilylation between the backbones and chain-end vinyl functionalized polystyrene. The uniformly grafted bottlebrush exhibits the highest hydrodynamic radius (Rh ) of 5.6 nm and the lowest Tg of 79 °C which may be attributed to its compact grafted structure. This methodology exhibits high efficiency and convenience for the construction of bottlebrushes with controlled distribution of brushes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.