Epigenetic abnormalities are common in hematologic malignancies, including multiple myeloma, and their effects can be efficiently counteracted by a class of tumor suppressor miRNAs, named epi-miRNAs. Given the oncogenic role of histone deacetylases (HDAC) in multiple myeloma, we investigated whether their activity could be antagonized by miR-29b, a well-established epi-miRNA. We demonstrated here that miR-29b specifically targets HDAC4 and highlighted that both molecules are involved in a functional loop. In fact, silencing of HDAC4 by shRNAs inhibited multiple myeloma cell survival and migration and triggered apoptosis and autophagy, along with the induction of miR-29b expression by promoter hyperacetylation, leading to the downregulation of prosurvival miR-29b targets (SP1, MCL-1). Moreover, treatment with the pan-HDAC inhibitor SAHA upregulated miR-29b, overcoming the negative control exerted by HDAC4. Importantly, overexpression or inhibition of miR-29b, respectively, potentiated or antagonized SAHA activity on multiple myeloma cells, as also shown in vivo by a strong synergism between miR-29b synthetic mimics and SAHA in a murine xenograft model of human multiple myeloma. Altogether, our results shed light on a novel epigenetic circuitry regulating multiple myeloma cell growth and survival and open new avenues for miR-29b-based epi-therapeutic approaches in the treatment of this malignancy. Mol Cancer Ther; 15(6); 1364-75. Ó2016 AACR.
X-box binding protein 1 (XBP-1) is a transcription factor is essential for the differentiation of plasma cells and the unfolded protein response. XBP-1 is significantly up-regulated in myeloma cells compared to both normal plasma cells and B-cells. Selective and specific requirement of XBP-1 for differentiation of B cells to plasma cells and its further up-regulation in multiple myeloma (MM) cells makes it a promising target for immunotherapy directed at MM. We have evaluated XBP-1 as a target antigen to develop MM-specific immunotherapy. In order to generate XBP-1 antigen-specific cytotoxic T lymphocytes (CTLs), we have identified HLA-A2-specific peptides derived from non-spliced (short form) and spliced (long form) XBP-1 proteins. We have further modified the peptide by altering one amino acid, which is critical for HLA-A2 affinity, to obtain epitope, which has higher stability to HLA-A2 clefts. The modified XBP-1 peptides were able to evoke higher levels of IFN-g release compared to native peptides and were able to induce CTLs highly specific to MM, demonstrated by Calcein-released cytotoxicity assay. Cytotoxic activity of these XBP1 peptide-specific-CTLs against U266, a HLA-A2+/XBP-1+ MM cell line was 60% and 79% by CTLs stimulated by non-spliced peptide and 69% and 88% by CTLs stimulated by spliced peptide at Effector:Target ratios of 20:1 and 60:1, respectively. The CTLs did not lyse HLA-A2− or XBP-1− cells. These results were further confirmed by the novel CD107 cytotoxicity assay, which detects MM-specific cytolytic CD8+ T cells by flow-cytometric analyses. The CTLs generated with XBP-1 peptide displayed distinct phenotypes, showing high CD69+CD45RO+ cell population (62% in non-spliced peptide-CTLs, 67% in spliced peptide-CTLs, 4% in unstimulated control-CTLs) and CD45RA+CCR7+ cell population (1% in non-spliced peptide-CTLs, 1% in spliced peptide-CTLs, 24% in unstimulated control-CTLs). In conclusion, we report the identification of highly immunogenic heteroclitic XBP-1 epitopes that have ability to generate MM-specific CTLs. Confirmation of in vivo activity of these CTLs in SCID mouse model is currently underway prior to its evaluation in clinical studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.