Worldwide, 100 million people are expected to die this century from the consequences of nicotine addiction, but nicotine is also known to enhance cognitive performance. Identifying the molecular mechanisms involved in nicotine reinforcement and cognition is a priority and requires the development of new in vivo experimental paradigms. The ventral tegmental area (VTA) of the midbrain is thought to mediate the reinforcement properties of many drugs of abuse. Here we specifically re-expressed the beta2-subunit of the nicotinic acetylcholine receptor (nAChR) by stereotaxically injecting a lentiviral vector into the VTA of mice carrying beta2-subunit deletions. We demonstrate the efficient re-expression of electrophysiologically responsive, ligand-binding nicotinic acetylcholine receptors in dopamine-containing neurons of the VTA, together with the recovery of nicotine-elicited dopamine release and nicotine self-administration. We also quantified exploratory behaviours of the mice, and showed that beta2-subunit re-expression restored slow exploratory behaviour (a measure of cognitive function) to wild-type levels, but did not affect fast navigation behaviour. We thus demonstrate the sufficient role of the VTA in both nicotine reinforcement and endogenous cholinergic regulation of cognitive functions.
Nicotine is the primary psychoactive component of tobacco. Its reinforcing and addictive properties depend on nicotinic acetylcholine receptors (nAChRs) located within the mesolimbic axis originating in the ventral tegmental area (VTA). The roles and oligomeric assembly of subunit α4-and subunit α6-containing nAChRs in dopaminergic (DAergic) neurons are much debated. Using subunit-specific knockout mice and targeted lentiviral re-expression, we have determined the subunit dependence of intracranial nicotine self-administration (ICSA) into the VTA and the effects of nicotine on dopamine (DA) neuron excitability in the VTA and on DA transmission in the nucleus accumbens (NAc). We show that the α4 subunit, but not the α6 subunit, is necessary for ICSA and nicotine-induced bursting of VTA DAergic neurons, whereas subunits α4 and α6 together regulate the activity dependence of DA transmission in the NAc. These data suggest that α4-dominated enhancement of burst firing in DA neurons, relayed by DA transmission in NAc that is gated by nAChRs containing α4 and α6 subunits, underlies nicotine self-administration and its long-term maintenance.electrophysiology | lentivirus | nicotinic receptor | voltammetry | ventral striatum
Chronic nicotine exposure results in long-term homeostatic regulation of nicotinic acetylcholine receptors (nAChRs) that play a key role in the adaptative cellular processes leading to addiction. However, the relative contribution of the different nAChR subunits in this process is unclear. Using genetically modified mice and pharmacological manipulations, we provide behavioral, electrophysiological, and pharmacological evidence for a long-term mechanism by which chronic nicotine triggers opposing processes differentially mediated by 2*-vs. ␣7*nAChRs. These data offer previously undescribed insights into the understanding of nicotine addiction and the treatment of several human pathologies by nicotine-like agents chronically acting on 2*-or ␣7*nAChRs.exploratory behaviors ͉ homeostatis ͉ ventral tegmental area ͉ opponent process
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.