In this letter, we report the first experimental demonstration of microdisk resonators that are vertically coupled to their buried access waveguides on III-V semiconductor epitaxial structures using an original fabrication process. The here-proposed and validated three-dimensional integration scheme exploits selective lateral thermal oxidation of aluminiumrich AlGaAs layers. Compared with the previously reported processing techniques, this new scheme is simpler as it does not require any planarization or substrate transfer steps. As a proofof-principle demonstration of this approach, 250-µm diameter microdisk devices exhibiting quality factor reaching ∼8500 have been successfully fabricated.
We have developed a 3D super-resolution microscopy method that enables deep imaging in cells. This technique relies on the effective combination of multifocus microscopy and astigmatic 3D single-molecule localization microscopy. We describe the optical system and the fabrication process of its key element, the multifocus grating. Then, two strategies for localizing emitters with our imaging method are presented and compared with a previously described deep 3D localization algorithm. Finally, we demonstrate the performance of the method by imaging the nuclear envelope of eukaryotic cells reaching a depth of field of ~4µm.
International audienceA new mid-infrared (MIR) Vertical Cavity Surface Emitting Laser (VCSEL) structure is proposed. We have integrated to the VCSEL structure both an oxide aperture for lateral confinement, and a sub-wavelength high-contrast-grating top mirror. Upon the GaSb-based half-VCSEL, we have grown a metamorphic AlGaAs heterostructure to enable thermal oxidation and grating mirror fabrication steps. A methodology based on optimization and anti-optimization methods has been used to design the optical grating, with improved parameter tolerances regarding processing errors. Finally, we show the complete fabrication of an electrically-pumped MIR monolithic VCSEL structure implementing both oxide confinement and a subwavelength grating top mirror
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.