Republication or reproduction of this report or its storage and/or dissemination by electronic means is permitted without the need for formal IUPAC permission on condition that an acknowledgmentAbstract: A unified scale is recommended for reporting the NMR chemical shifts of all nuclei relative to the 1 H resonance of tetramethylsilane (TMS). The unified scale is designed to provide a precise ratio, Ξ, of the resonance frequency of a given nuclide to that of the primary reference, the 1 H resonance of TMS in dilute solution (volume fraction, ϕ < 1%) in chloroform. Referencing procedures are discussed, including matters of practical application of the unified scale. Special attention is paid to recommended reference samples, and values of Ξ for secondary references on the unified scale are listed, many of which are the results of new measurements.Some earlier recommendations relating to the reporting of chemical shifts are endorsed. The chemical shift, δ, is redefined to avoid previous ambiguities but to leave practical usage unchanged. Relations between the unified scale and recently published recommendations for referencing in aqueous solutions (for specific use in biochemical work) are discussed, as well as the special effects of working in the solid state with magic-angle spinning. In all, nine new recommendations relating to chemical shifts are made.Standardized nuclear spin data are also presented in tabular form for the stable (and some unstable) isotopes of all elements with nonzero quantum numbers. The information given includes quantum numbers, isotopic abundances, magnetic moments, magnetogyric ratios and receptivities, together with quadrupole moments and line-width factors where appropriate.
IUPAC has published a number of recommendations regarding the reporting of nuclear magnetic resonance (NMR) data, especially chemical shifts. The most recent publication [Pure Appl. Chem.73, 1795 (2001)] recommended that tetramethylsilane (TMS) serve as a universal reference for reporting the shifts of all nuclides, but it deferred recommendations for several aspects of this subject. This document first examines the extent to which the 1H shielding in TMS itself is subject to change by variation in temperature, concentration, and solvent. On the basis of recently published results, it has been established that the shielding of TMS in solution [along with that of sodium-3-(trimethylsilyl)propanesulfonate, DSS, often used as a reference for aqueous solutions] varies only slightly with temperature but is subject to solvent perturbations of a few tenths of a parts per million (ppm). Recommendations are given for reporting chemical shifts under most routine experimental conditions and for quantifying effects of temperature and solvent variation, including the use of magnetic susceptibility corrections and of magic-angle spinning (MAS). This document provides the first IUPAC recommendations for referencing and reporting chemical shifts in solids, based on high-resolution MAS studies. Procedures are given for relating 13C NMR chemical shifts in solids to the scales used for high-resolution studies in the liquid phase. The notation and terminology used for describing chemical shift and shielding tensors in solids is reviewed in some detail, and recommendations are given for best practice.
ABSTRACT:A unified scale is recommended for reporting the NMR chemical shifts of all nuclei relative to the 1 H resonance of tetramethylsilane. The unified scale is designed to provide a precise ratio, ⌶, of the resonance frequency of a given nuclide to that of the primary reference, the 1 H resonance of tetramethylsilane (TMS) in dilute solution (volume fraction, Ͻ 1%) in chloroform. Referencing procedures are discussed, including matters of practical application of the unified scale. Special attention is paid to recommended reference samples and values of ⌶ for secondary references on the unified scale are listed, many of which are the results of new measurements. Some earlier recommendations relating to the reporting of chemical shifts are endorsed. The chemical shift, ␦, is redefined to avoid previous ambiguities but to leave practical usage unchanged. Relations between the unified scale and recently published recommendations for referencing in aqueous solutions (for specific use in biochemical work) are discussed, as well as the special effects of working in the solid state with magic-angle spinning. In all, nine new recommendations relating to chemical shifts are made. Standardized nuclear spin data are also presented in tabular form for the stable (and some unstable) isotopes of all elements with non-zero
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.