; for the Covisep investigators IMPORTANCE Risk factors associated with the severity of coronavirus disease 2019 (COVID-19) in patients with multiple sclerosis (MS) are unknown. Disease-modifying therapies (DMTs) may modify the risk of developing a severe COVID-19 infection, beside identified risk factors such as age and comorbidities. OBJECTIVE To describe the clinical characteristics and outcomes in patients with MS and COVID-19 and identify factors associated with COVID-19 severity. DESIGN, SETTING, AND PARTICIPANTS The Covisep registry is a multicenter, retrospective, observational cohort study conducted in MS expert centers and general hospitals and with neurologists collaborating with MS expert centers and members of the Société Francophone de la Sclérose en Plaques. The study included patients with MS presenting with a confirmed or highly suspected diagnosis of COVID-19 between March 1, 2020, and May 21, 2020. EXPOSURES COVID-19 diagnosed with a polymerase chain reaction test on a nasopharyngeal swab, thoracic computed tomography, or typical symptoms. MAIN OUTCOMES AND MEASURES The main outcome was COVID-19 severity assessed on a 7-point ordinal scale (ranging from 1 [not hospitalized with no limitations on activities] to 7 [death]) with a cutoff at 3 (hospitalized and not requiring supplemental oxygen). We collected demographics, neurological history, Expanded Disability Severity Scale score (EDSS; ranging from 0 to 10, with cutoffs at 3 and 6), comorbidities, COVID-19 characteristics, and outcomes. Univariate and multivariate logistic regression models were used to estimate the association of collected variables with COVID-19 outcomes. RESULTS A total of 347 patients (mean [SD] age, 44.6 [12.8] years, 249 women; mean [SD] disease duration, 13.5 [10.0] years) were analyzed. Seventy-three patients (21.0%) had a COVID-19 severity score of 3 or more, and 12 patients (3.5%) died of COVID-19. The median EDSS was 2.0 (range, 0-9.5), and 284 patients (81.8%) were receiving DMT. There was a higher proportion of patients with a COVID-19 severity score of 3 or more among patients with no DMT relative to patients receiving DMTs (46.0% vs 15.5%; P < .001). Multivariate logistic regression models determined that age (odds ratio per 10 years: 1.9 [95% CI, 1.4-2.5]), EDSS (OR for EDSS Ն6, 6.3 [95% CI. 2.8-14.4]), and obesity (OR, 3.0 [95% CI, 1.0-8.7]) were independent risk factors for a COVID-19 severity score of 3 or more (indicating hospitalization or higher severity). The EDSS was associated with the highest variability of COVID-19 severe outcome (R 2 , 0.2), followed by age (R 2 , 0.06) and obesity (R 2 , 0.01). CONCLUSIONS AND RELEVANCE In this registry-based cohort study of patients with MS, age, EDSS, and obesity were independent risk factors for severe COVID-19; there was no association found between DMTs exposure and COVID-19 severity. The identification of these risk factors should provide the rationale for an individual strategy regarding clinical management of patients with MS during the COVID-19 pandemic.
In adults, MOG-Ab-associated disease extends beyond clinical and radiologic abnormalities in the optic nerve and spinal cord. Despite the relapsing course, the overall visual and motor outcome is better compared with AQP4-Ab-positive patients.
Mutations in OPA1, a dynamin-related GTPase involved in mitochondrial fusion, cristae organization and control of apoptosis, have been linked to non-syndromic optic neuropathy transmitted as an autosomal-dominant trait (DOA). We here report on eight patients from six independent families showing that mutations in the OPA1 gene can also be responsible for a syndromic form of DOA associated with sensorineural deafness, ataxia, axonal sensory-motor polyneuropathy, chronic progressive external ophthalmoplegia and mitochondrial myopathy with cytochrome c oxidase negative and Ragged Red Fibres. Most remarkably, we demonstrate that these patients all harboured multiple deletions of mitochondrial DNA (mtDNA) in their skeletal muscle, thus revealing an unrecognized role of the OPA1 protein in mtDNA stability. The five OPA1 mutations associated with these DOA 'plus' phenotypes were all mis-sense point mutations affecting highly conserved amino acid positions and the nuclear genes previously known to induce mtDNA multiple deletions such as POLG1, PEO1 (Twinkle) and SLC25A4 (ANT1) were ruled out. Our results show that certain OPA1 mutations exert a dominant negative effect responsible for multi-systemic disease, closely related to classical mitochondrial cytopathies, by a mechanism involving mtDNA instability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.