Abstract. The Semantic Web contains an enormous amount of information in the form of knowledge bases (KB). To make this information available, many question answering (QA) systems over KBs were created in the last years. Building a QA system over KBs is difficult because there are many different challenges to be solved. In order to address these challenges, QA systems generally combine techniques from natural language processing, information retrieval, machine learning and Semantic Web. The aim of this survey is to give an overview of the techniques used in current QA systems over KBs. We present the techniques used by the QA systems which were evaluated on a popular series of benchmarks: Question Answering over Linked Data (QALD). Techniques that solve the same task are first grouped together and then described. The advantages and disadvantages are discussed for each technique. This allows a direct comparison of similar techniques. Additionally, we point to techniques that are used over WebQuestions and SimpleQuestions, which are two other popular benchmarks for QA systems.
Thanks to the development of the Semantic Web, a lot of new structured data has become available on the Web in the form of knowledge bases (KBs). Making this valuable data accessible and usable for end-users is one of the main goals of Question Answering (QA) over KBs. Most current QA systems query one KB, in one language (namely English). The existing approaches are not designed to be easily adaptable to new KBs and languages. We first introduce a new approach for translating natural language questions to SPARQL queries. It is able to query several KBs simultaneously, in different languages, and can easily be ported to other KBs and languages. In our evaluation, the impact of our approach is proven using 5 different well-known and large KBs: Wikidata, DBpedia, MusicBrainz, DBLP and Freebase as well as 5 different languages namely English, German, French, Italian and Spanish. Second, we show how we integrated our approach, to make it easily accessible by the research community and by end-users. To summarize, we provided a conceptional solution for multilingual, KB-agnostic Question Answering over the Semantic Web. The provided first approximation validates this concept.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.