Until1985, seven vent fields were described from the Mid-Atlantic Ridge (MAR). An eighth field, Mount Saldanha (36° N), discovered in 1998, showed unusual geological and biologica! settings. Vent sites on the MAR exhibit varied environmental conditions, resulting from depth variation of the axis and associated physical parameters, and different source rocks. These could be considered as first order (i.e. most dominant) factors affecting the composition of vent communities on the MAR, in contrast to the East Pacific Rise (EPR) where geographical isolation appears to be a major determinant of fauna! differences. In this paper, the geological setting and vent fluid composition of the fields are considered together with their community composition to tentatively ascertain the order of a hierarchy between dispersa! and environmental control. The deepest fields (>3000 m) are rather stable systems. The shallower fields, especially Rainbow and Menez Gwen, present some evidence of instability in time and space. The variability in fluid composition is related to phase separation processes (boiling/distillation of subsurface vent fluids) and to the nature of the basement rocks. Depending on depth, phase separation produces gas-enriched and metal-depleted fluids (Menez Gwen, Lucky Strike) or metal-enriched brines (Rainbow, TAG). In addition, high methane content characterises the fluids formed in ultramafic rocks (Rainbow, Logatchev) compared to basaltic rocks. The discrepancy in mineral particulate fluxes at Lucky Strike and Menez Gwen, on one hand, and TAG and Rainbow, on the other, is correlated to the predominance of the vapour or brîne phase. The semi-quantitative description of the fauna! composition of the different vent fields displays a continuum from Rimicaris-dominated to Bathymodiolus-dominated assemblages. Rather than geographic or bathymetric zonation, this gradati an appears tobe related to the metal content of the fluids. In addition, the penetrati an of non vent species into the vent environment increases with decreasing hydrostatic pressure and/or metal content in the fluids. Similarity analysis between vent communities shows that similarity is strongest between Menez Gwen and Lucky Strike (the shallowest fields), less significant between these sites and Rainbow, and weakest for Snake Pit. The inverse relationship between filter feeding organisms and metal concentration in vent fluids could result from a hindrance of mussel bed development by particulate or toxic metal fluxes, and has to be further investigated. Conversely, high metal and particulate content would less affect the more mobile Rimicaris populations. Considering specific similarities of endemic fauna between the faur best known hydrothermal vents, the distance between vent fields appears tobe a first order parameter. Nevertheless, within the proximity of the Azores Triple Junction area, and in the absence of geographical discontinuity, the similarity between fields stays rather low suggesting fauna! islands that have distinct composition and h...
[1] We present new high-resolution bathymetry and backscatter data acquired in 2006 with the ROV Victor 6000 over the Lucky Strike hydrothermal field, Mid-Atlantic Ridge. As long-term monitoring of the Lucky Strike area (MoMAR project) is being implemented, these new high-resolution data offer an unprecedented view of the distribution of hydrothermal edifices, eruptive facies, and small-scale tectonic features in the Lucky Strike vent field. We show that vents located in the NW and NE correspond with wide expanses of lumpy seafloor which we interpret as primarily made of broken chimneys and sulfide edifices. They are found above scarps with relief >50 m or on associated mass wasting deposits. By contrast, the SE and SW vents correspond with small expanses of lumpy seafloor and are located near smaller scarps which we interpret as more recent faults. Hydrothermal edifices in the SW venting area appear very recent, postdating the emplacement and faulting of the most recent lava. We propose that this difference in the age of hydrothermal edifices does not mean that hydrothermal venting itself is more recent in the southern part of the Lucky Strike field because preexisting sulfide deposits there may have been buried by recent volcanic deposits. Instead, the older edifices in the northern part of the hydrothermal field may have been allowed more time to grow because they are set above the level of recent lava flows. The formation of a lava lake is the most recent eruptive event detected at Lucky Strike. Lava drainback is evidenced by benches and lava pillars, suggesting a close connection with an underlying magma reservoir, which probably corresponds to the melt body imaged by Singh et al. (2006). We have found no evidence that this lake was active for months to decades, as lava lakes at terrestrial volcanoes. It may instead have formed as a lava pond, with successive lava flows covering the eruptive vents, as proposed for similar features at the EPR. The horizontal surface of the lake is deformed only near its southwestern shore, along a NNEtrending set of faults and fissures, which appear to control the distribution of hydrothermal chimneys.
Knowledge on quantitative faunal distribution patterns of hydrothermal communities in slow-spreading vent fields is particularly scarce, despite the importance of these ridges in the global mid-ocean system. This study assessed the composition, abundance and diversity of 12 benthic faunal assemblages from various locations on the Eiffel Tower edifice (Lucky Strike vent field, Mid-Atlantic Ridge) and investigated the role of key environmental conditions (temperature, total dissolved iron (TdFe), sulfide (TdS), copper (TdCu) and pH) on the distribution of macro-and meiofaunal species at small spatial scales (< 1 m). There were differences in macro-and meiofaunal community structure between the different sampling locations, separating the hydrothermal community of the Eiffel Tower edifice into three types of microhabitats: (1) cold microhabitats characterized by low temperatures (<6 °C), high TdCu (up to 2.4±1.37 µmol l−1), high pH (up to 7.34±0.13) but low TdS concentrations (<6.98±5.01 µmol l−1); (2) warm microhabitats characterized by warmer temperatures (>6 °C), low pH (<6.5) and high TdS/TdFe concentrations (>12.8 µmol l−1/>1.1 µmol l−1 respectively); and (3) a third microhabitat characterized by intermediate abiotic conditions. Environmental conditions showed more variation in the warm microhabitats than in the cold microhabitats. In terms of fauna, the warm microhabitats had lower macro-and meiofaunal densities, and lower richness and Shannon diversity than the cold microhabitats. Six macrofaunal species (Branchipolynoe seepensis, Amathys lutzi, Bathymodiolus azoricus, Lepetodrilus fucensis, Protolira valvatoides and Chorocaris chacei) and three meiofaunal taxa (Paracanthonchus, Cephalochaetosoma and Microlaimus) were identified as being significant indicator species/taxa of particular microhabitats. Our results also highlight very specific niche separation for copepod juveniles among the different hydrothermal microhabitats. Some sampling units showed Please note that this is an author-produced PDF of an article accepted for publication following peer review. The definitive publisher-authenticated version is available on the publisher Web site. unique faunal composition and increased beta diversity on the Eiffel Tower edifice. Contrary to what was expected, the highest beta diversity was not associated with a particular microhabitat type, but rather with location on the central part of the edifice where other structuring factors may predominate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.