Background Italy was the first country outside China to experience the impact of the COVID-19 pandemic, which resulted in a significant health burden. This study presents an analysis of the excess mortality across the 107 Italian provinces, stratified by sex, age group and period of the outbreak. Methods The analysis was performed using a two-stage interrupted time-series design using daily mortality data for the period January 2015–May 2020. In the first stage, we performed province-level quasi-Poisson regression models, with smooth functions to define a baseline risk while accounting for trends and weather conditions and to flexibly estimate the variation in excess risk during the outbreak. Estimates were pooled in the second stage using a mixed-effects multivariate meta-analysis. Results In the period 15 February–15 May 2020, we estimated an excess of 47 490 [95% empirical confidence intervals (eCIs): 43 984 to 50 362] deaths in Italy, corresponding to an increase of 29.5% (95% eCI: 26.8 to 31.9%) from the expected mortality. The analysis indicates a strong geographical pattern, with the majority of excess deaths occurring in northern regions, where few provinces experienced increases up to 800% during the peak in late March. There were differences by sex, age and area both in the overall impact and in its temporal distribution. Conclusion This study offers a detailed picture of excess mortality during the first months of the COVID-19 pandemic in Italy. The strong geographical and temporal patterns can be related to the implementation of lockdown policies and multiple direct and indirect pathways in mortality risk.
Background: Italy was the first country outside China to experience the impact of the COVID-19 pandemic, which resulted in a significant health burden. This study presents an analysis of the excess mortality across the 107 Italian provinces, stratified by sex, age group, and period of the outbreak. Methods: The analysis was performed using a two-stage interrupted time series design using daily mortality data for the period January 2015 - May 2020. In the first stage, we performed province-level quasi-Poisson regression models, with smooth functions to define a baseline risk while accounting for trends and weather conditions and to flexibly estimate the variation in excess risk during the outbreak. Estimates were pooled in the second stage using a mixed-effects multivariate meta-analysis. Results: In the period 15 February - 15 May 2020, we estimated an excess of 47,490 (95% empirical confidence intervals: 43,984 to 50,362) deaths in Italy, corresponding to an increase of 29.5% (95%eCI: 26.8 to 31.9%) from the expected mortality. The analysis indicates a strong geographical pattern, with the majority of excess deaths occurring in northern regions, where few provinces experienced up to 800% increase during the peak in late March. There were differences by sex, age, and area both in the overall impact and in its temporal distribution. Conclusions: This study offers a detailed picture of excess mortality during the first months of the COVID-19 pandemic in Italy. The strong geographical and temporal patterns can be related to implementation of lockdown policies and multiple direct and indirect pathways in mortality risk.
Epidemiological studies on the health effects of air pollution usually rely on measurements from fixed ground monitors, which provide limited spatio-temporal coverage. Data from satellites, reanalysis, and chemical transport models offer additional information used to reconstruct pollution concentrations at high spatio-temporal resolutions. This study aims to develop a multi-stage satellite-based machine learning model to estimate daily fine particulate matter (PM2.5) levels across Great Britain between 2008–2018. This high-resolution model consists of random forest (RF) algorithms applied in four stages. Stage-1 augments monitor-PM2.5 series using co-located PM10 measures. Stage-2 imputes missing satellite aerosol optical depth observations using atmospheric reanalysis models. Stage-3 integrates the output from previous stages with spatial and spatio-temporal variables to build a prediction model for PM2.5. Stage-4 applies Stage-3 models to estimate daily PM2.5 concentrations over a 1 km grid. The RF architecture performed well in all stages, with results from Stage-3 showing an average cross-validated R2 of 0.767 and minimal bias. The model performed better over the temporal scale when compared to the spatial component, but both presented good accuracy with an R2 of 0.795 and 0.658, respectively. These findings indicate that direct satellite observations must be integrated with other satellite-based products and geospatial variables to derive reliable estimates of air pollution exposure. The high spatio-temporal resolution and the relatively high precision allow these estimates (approximately 950 million points) to be used in epidemiological analyses to assess health risks associated with both short- and long-term exposure to PM2.5.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.