This review examines the dichotomy between automatic and autonomous behaviors in surgical robots, maps the possible levels of autonomy of these robots, and describes the primary enabling technologies that are driving research in this field. It is organized in five main sections that cover increasing levels of autonomy. At level 0, where the bulk of commercial platforms are, the robot has no decision autonomy. At level 1, the robot can provide cognitive and physical assistance to the surgeon, while at level 2, it can autonomously perform a surgical task. Level 3 comes with conditional autonomy, enabling the robot to plan a task and update planning during execution. Finally, robots at level 4 can plan and execute a sequence of surgical tasks autonomously. Expected final online publication date for the Annual Review of Control, Robotics, and Autonomous Systems, Volume 4 is May 3, 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Magnetic field gradients have repeatedly been shown to be the most feasible mechanism for gastrointestinal capsule endoscope actuation. An inverse quartic magnetic force variation with distance results in large force gradients induced by small movements of a driving magnet; this necessitates robotic actuation of magnets to implement stable control of the device. A typical system consists of a serial robot with a permanent magnet at its end effector that actuates a capsule with an embedded permanent magnet. We present a tethered capsule system where a capsule with an embedded magnet is closed loop controlled in 2 degree-of-freedom in position and 2 degree-of-freedom in orientation. Capitalizing on the magnetic field of the external driving permanent magnet, the capsule is localized in 6-D allowing for both position and orientation feedback to be used in a control scheme. We developed a relationship between the serial robot's joint parameters and the magnetic force and torque that is exerted onto the capsule. Our methodology was validated both in a dynamic simulation environment where a custom plug-in for magnetic interaction was written, as well as on an experimental platform. The tethered capsule was demonstrated to follow desired trajectories in both position and orientation with accuracy that is acceptable for colonoscopy.
Background and Aims Artificial intelligence (AI) research in colonoscopy is progressing rapidly but widespread clinical implementation is not yet a reality. We aimed to identify the top implementation research priorities. Methods An established modified Delphi approach for research priority setting was used. Fifteen international experts, including endoscopists and translational computer scientists/engineers from 9 countries participated in an online survey over 9 months. Questions related to AI implementation in colonoscopy were generated as a long-list in the first round, and then scored in two subsequent rounds to identify the top 10 research questions. Results The top 10 ranked questions were categorised into 5 themes. Theme 1: Clinical trial design/end points (4 questions), related to optimum trial designs for polyp detection and characterisation, determining the optimal end-points for evaluation of AI and demonstrating impact on interval cancer rates. Theme 2: Technological Developments (3 questions), including improving detection of more challenging and advanced lesions, reduction of false positive rates and minimising latency. Theme 3: Clinical adoption/Integration (1 question) concerning effective combination of detection and characterisation into one workflow. Theme 4: Data access/annotation (1 question) concerning more efficient or automated data annotation methods to reduce the burden on human experts. Theme 5: Regulatory Approval (1 question) related to making regulatory approval processes more efficient. Conclusions This is the first reported international research priority setting exercise for AI in colonoscopy. The study findings should be used as a framework to guide future research with key stakeholders to accelerate the clinical implementation of AI in endoscopy.
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.R obotic-assisted surgery is now well established in clinical practice and has become the gold-standard clinical treatment option for several clinical indications. The field of robotic-assisted surgery is expected to grow substantially in the next decade, with a range of new robotic devices emerging to address unmet clinical needs across different specialties. A vibrant surgical robotics research community is pivotal for conceptualizing such new systems as well as for developing and training the engineers and scientists to translate them into practice. The da Vinci Research Kit (dVRK), an academic and industry collaborative effort to repurpose decommissioned da Vinci surgical systems [Intuitive Surgical Inc. (ISI), California, USA] as a research platform for surgical robotics research, has been a key initiative for addressing a barrier to entry for new research groups in surgical robotics. In this article, we present an extensive review of the publications that have been facilitated by the dVRK over the past decade. We classify research efforts into different categories and outline some of the major challenges and needs for the robotics community to maintain and build upon this initiative.
This is a repository copy of Optimal Design of Soft Continuum Magnetic Robots under Follow-the-leader Shape Forming Actuation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.