The objective of this study was to extract novel phenotypes related to disease resilience using daily feed intake data from growing pigs under a multifactorial natural disease challenge that was designed to mimic a commercial environment with high disease pressure to maximize expression of resilience. Data used were the first 1,341 crossbred wean-to-finish pigs from a research facility in Québec, Canada. The natural challenge was established under careful veterinary oversight by seeding the facility with diseased pigs from local health-challenged farms, targeting various viral and bacterial diseases, and maintaining disease pressure by entering batches of 60–75 pigs in a continuous flow system. Feed intake (FI) is sensitive to disease, as pigs tend to eat less when they become ill. Four phenotypes were extracted from the individual daily FI data during finishing as novel measures of resilience. The first two were daily variability in FI or FI duration, quantified by the root mean square error (RMSE) from the within individual regressions of FI or duration at the feeder (DUR) on age (RMSEFI and RMSEDUR). The other two were the proportion of off-feed days, classified based on negative residuals from a 5% quantile regression (QR) of daily feed intake or duration data on age across all pigs (QRFI and QRDUR). Mortality and treatment rate had a heritability of 0.13 (±0.05) and 0.29 (±0.07), respectively. Heritability estimates for RMSEFI, RMSEDUR, QRFI, and QRDUR were 0.21 (±0.07) 0.26 (±0.07), 0.15 (±0.06), and 0.23 (±0.07), respectively. Genetic correlations of RMSE and QR measures with mortality and treatment rate ranged from 0.37 to 0.85, with QR measures having stronger correlations with both. Estimates of genetic correlations of RMSE measures with production traits were typically low, but often favorable (e.g., −0.31 between RMSEFI and finishing ADG). Although disease resilience was our target, fluctuations in FI and duration can be caused by many factors other than disease and should be viewed as overall indicators of general resilience to a variety of stressors. In conclusion, daily variation in FI or duration at the feeder can be used as heritable measures of resilience.
The objective was to estimate genetic parameters of performance and resilience of growing pigs under disease. Data were from 3,139 Yorkshire x Landrace wean-to-finish pigs that were exposed to a natural polymicrobial disease challenge that was established by entering naturally infected animals into a nursery barn, targeting various viral and bacterial diseases. The challenge was maintained by entering batches of 60 to 75 healthy nursery pigs every 3 weeks in a continuous flow system. Traits analyzed included average daily gain (ADG), feed intake (ADFI), and duration (ADFD), feed conversion ratio (FCR), residual feed intake (RFI), mortality (MOR), number of health treatments (TRT), health scores (Hscore), carcass weight (CWT), back fat (CBF) and loin depth (CLD), dressing percentage (DRS), lean yield (LYLD), day-to-day variation in feed intake and duration (VARFI and VARDUR), and the proportion of off-feed days (OFFFI and OFFDUR). Analyses were by mixed linear models with genomic relationships. The resilience traits TRT, MOR, and Hscore were lowly heritable (up to 0.15) but had high genetic correlations with each other. Performance traits ADG, ADFI, ADFD, FCR, RFI, and carcass traits were moderate to highly heritable (0.17 to 0.49). Heritabilities of resilience indicator traits OFF and VAR had low to moderate heritabilities (0.08 to 0.23) but were higher when based on duration versus amount. ADFI had a low genetic correlation with ADFD (0.13). ADG in the challenge nursery had stronger negative genetic correlations with both TRT and MOR than ADG in the finisher (-0.37 to -0.74 versus -0.15 to -0.56). ADFI and FCR had moderate negative (-0.21 to -0.39) and positive (0.34 to 0.49), respectively, genetic correlations with TRT and MOR. ADFD and RFI had very low genetic correlations with TRT and MOR. CWT and DRS were moderately negatively correlated with TRT and MOR (-0.33 to -0.59). Resilience indicator traits based on feed intake or duration had moderate to high positive genetic correlations with TRT (0.18 to 0.81) and MOR (0.33 to 0.87). In conclusion, performance and resilience traits under a polymicrobial disease challenge are heritable and can be changed by selection. Phenotypes extracted from feed intake patterns can be used as genetic indicator traits for disease resilience. Most promising is day-to-day variation in intake duration, which had a sizeable heritability (0.23) and favorable genetic correlations with mortality (0.79) and treatment rate (0.20).
Disease resilience is a valuable trait to help manage infectious diseases in livestock. It is anticipated that improved disease resilience will sustainably increase production efficiency, as resilient animals maintain their performance in the face of infection. The objective of this study was to identify phenotypes related to disease resilience using complete blood count (CBC) data from a wean-to-finish natural disease challenge model, established to mimic the disease pressure caused by many common pathogens at the commercial level of pig production. In total, 2433 F1 crossbred (Landrace × Yorkshire) barrows that went through the natural disease challenge model were classified into four groups (resilient, average, susceptible, and dead) based on their divergent responses in terms of growth and individual treatment. Three sets of blood samples for CBC analysis were drawn at 2-weeks before, and at 2-and 6-weeks after the challenge: Blood 1, Blood 3, and Blood 4 respectively. CBC of Blood 1 taken from healthy pigs before challenge did not show differences between groups. However, resilient animals were found to be primed to initiate a faster adaptive immune response and recover earlier following infection, with greater increases of lymphocyte concentration from Blood 1 to Blood 3 and for hemoglobin concentration and hematocrit from Blood 3 to Blood 4, but a lower neutrophil concentration from Blood 3 to Blood 4 than in susceptible and dead animals (FDR < 0.05). The CBC traits in response to the challenge were found to be heritable and genetically correlated with growth and treatment, which may indicate the potential for developing CBC under disease or commercial conditions as a phenotype in commercial systems as part of developing predictions for disease resilience.
Metabolites in plasma of healthy nursery pigs were quantified using nuclear magnetic resonance. Heritabilities of metabolite concentration were estimated along with their phenotypic and genetic correlations with performance, resilience, and carcass traits in growing pigs exposed to a natural polymicrobial disease challenge. Variance components were estimated by GBLUP. Heritability estimates were low to moderate (0.11 ± 0.08 to 0.19 ± 0.08) for 14 metabolites, moderate to high (0.22 ± 0.09 to 0.39 ± 0.08) for 17 metabolites, and highest for l-glutamic acid (0.41 ± 0.09) and hypoxanthine (0.42 ± 0.08). Phenotypic correlation estimates of plasma metabolites with performance and carcass traits were generally very low. Significant genetic correlation estimates with performance and carcass traits were found for several measures of growth and feed intake. Interestingly the plasma concentration of oxoglutarate was genetically negatively correlated with treatments received across the challenge nursery and finisher (− 0.49 ± 0.28; P < 0.05) and creatinine was positively correlated with mortality in the challenge nursery (0.85 ± 0.76; P < 0.05). These results suggest that some plasma metabolite phenotypes collected from healthy nursery pigs are moderately heritable and genetic correlations with measures of performance and resilience after disease challenge suggest they may be potential genetic indicators of disease resilience.
Background Disease resilience is the ability to maintain performance under pathogen exposure but is difficult to select for because breeding populations are raised under high health. Selection for resilience requires a trait that is heritable, easy to measure on healthy animals, and genetically correlated with resilience. Natural antibodies (NAb) are important parts of the innate immune system and are found to be heritable and associated with disease susceptibility in dairy cattle and poultry. Our objective was to investigate NAb and total IgG in blood of healthy, young pigs as potential indicator traits for disease resilience. Results Data were from Yorkshire x Landrace pigs, with IgG and IgM NAb (four antigens) and total IgG measured by ELISA in blood plasma collected ~ 1 week after weaning, prior to their exposure to a natural polymicrobial challenge. Heritability estimates were lower for IgG NAb (0.12 to 0.24, + 0.05) and for total IgG (0.19 + 0.05) than for IgM NAb (0.33 to 0.53, + 0.07) but maternal effects were larger for IgG NAb (0.41 to 0.52, + 0.03) and for total IgG (0.19 + 0.05) than for IgM NAb (0.00 to 0.10, + 0.04). Phenotypically, IgM NAb titers were moderately correlated with each other (average 0.60), as were IgG NAb titers (average 0.42), but correlations between IgM and IgG NAb titers were weak (average 0.09). Phenotypic correlations of total IgG were moderate with NAb IgG (average 0.46) but weak with NAb IgM (average 0.01). Estimates of genetic correlations among NAb showed similar patterns but with small SE, with estimates averaging 0.76 among IgG NAb, 0.63 among IgM NAb, 0.17 between IgG and IgM NAb, 0.64 between total IgG and IgG NAb, and 0.13 between total IgG and IgM NAb. Phenotypically, pigs that survived had slightly higher levels of NAb and total IgG than pigs that died. Genetically, higher levels of NAb tended to be associated with greater disease resilience based on lower mortality and fewer parenteral antibiotic treatments. Genome-wide association analyses for NAb titers identified several genomic regions, with several candidate genes for immune response. Conclusions Levels of NAb in blood of healthy young piglets are heritable and potential genetic indicators of resilience to polymicrobial disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.