G protein-coupled receptors (GPCRs) are responsible for the majority of cellular responses to hormones and neurotransmitters as well as the senses of sight, olfaction and taste. The paradigm of GPCR signaling is the activation of a heterotrimeric GTP binding protein (G protein) by an agonist-occupied receptor. The β2 adrenergic receptor (β2AR) activation of Gs, the stimulatory G protein for adenylyl cyclase, has long been a model system for GPCR signaling. Here we present the crystal structure of the active state ternary complex composed of agonist-occupied monomeric β2AR and nucleotide-free Gs heterotrimer. The principal interactions between the β2AR and Gs involve the amino and carboxyl terminal α-helices of Gs, with conformational changes propagating to the nucleotide-binding pocket. The largest conformational changes in the β2AR include a 14 Å outward movement at the cytoplasmic end of transmembrane segment 6 (TM6) and an alpha helical extension of the cytoplasmic end of TM5. The most surprising observation is a major displacement of the alpha helical domain of Gαs relative to the ras-like GTPase domain. This crystal structure represents the first high-resolution view of transmembrane signaling by a GPCR.
G protein coupled receptors (GPCRs) exhibit a spectrum of functional behaviors in response to natural and synthetic ligands. Recent crystal structures provide insights into inactive states of several GPCRs. Efforts to obtain an agonist-bound active-state GPCR structure have proven difficult due to the inherent instability of this state in the absence of a G protein. We generated a camelid antibody fragment (nanobody) to the human β2 adrenergic receptor (β2AR) that exhibits G protein-like behavior, and obtained an agonist-bound, active-state crystal structure of the receptor-nanobody complex. Comparison with the inactive β2AR structure reveals subtle changes in the binding pocket; however, these small changes are associated with an 11Å outward movement of the cytoplasmic end of transmembrane segment 6, and rearrangements of transmembrane segments 5 and 7 that are remarkably similar to those observed in opsin, an active form of rhodopsin. This structure provides insights into the process of agonist binding and activation.
Acetylcholine (ACh), the first neurotransmitter to be identified1, exerts many of its physiological actions via activation of a family of G protein-coupled receptors (GPCRs) known as muscarinic ACh receptors (mAChRs). Although the five mAChR subtypes (M1-M5) share a high degree of sequence homology, they show pronounced differences in G protein coupling preference and the physiological responses they mediate.2–4 Unfortunately, despite decades of effort, no therapeutic agents endowed with clear mAChR subtype selectivity have been developed to exploit these differences.5–6 We describe here the structure of the Gq/11-coupled M3 mAChR bound to the bronchodilator drug tiotropium and identify the binding mode for this clinically important drug. This structure, together with that of the Gi/o-coupled M2 receptor, offers new possibilities for the design of mAChR subtype-selective ligands. Importantly, the M3 receptor structure allows the first structural comparison between two members of a mammalian GPCR subfamily displaying different G-protein coupling selectivities. Furthermore, molecular dynamics simulations suggest that tiotropium binds transiently to an allosteric site en route to the binding pocket of both receptors. These simulations offer a structural view of an allosteric binding mode for an orthosteric GPCR ligand and raise additional opportunities for the design of ligands with different affinities or binding kinetics for different mAChR subtypes. Our findings not only offer new insights into the structure and function of one of the most important GPCR families, but may also facilitate the design of improved therapeutics targeting these critical receptors.
G protein-coupled receptors (GPCRs) are eukaryotic integral membrane proteins that modulate biological function by initiating cellular signaling in response to chemically diverse agonists. Despite recent progress in the structural biology of GPCRs1, the molecular basis for agonist binding and allosteric modulation of these proteins is poorly understood. Structural knowledge of agonist-bound states is essential for deciphering the mechanism of receptor activation, and for structure-guided design and optimization of ligands. However, the crystallization of agonist-bound GPCRs has been hampered by modest affinities and rapid off-rates of available agonists. Using the inactive structure of the human β2 adrenergic receptor (β2AR) as a guide, we designed a β2AR agonist that can be covalently tethered to a specific site on the receptor through a disulfide bond. The covalent β2AR-agonist complex forms efficiently, and is capable of activating a heterotrimeric G protein. We crystallized a covalent agonist-bound β2AR-T4L fusion protein in lipid bilayers through the use of the lipidic mesophase method2, and determined its structure at 3.5 Å resolution. A comparison to the inactive structure and an antibody-stabilized active structure (companion paper3) shows how binding events at both the extracellular and intracellular surfaces are required to stabilize an active conformation of the receptor. The structures are in agreement with long-timescale (up to 30 μs) molecular dynamics simulations showing that an agonist-bound active conformation spontaneously relaxes to an inactive-like conformation in the absence of a G protein or stabilizing antibody.
Summary G protein-coupled receptors (GPCRs) represent the largest family of membrane receptors1 that instigate signaling through nucleotide exchange on heterotrimeric G proteins. Nucleotide exchange, or more precisely GDP dissociation from the G protein α-subunit, is the key step toward G protein activation and initiation of downstream signaling cascades. Despite a wealth of biochemical and biophysical studies on inactive and active conformations of several heterotrimeric G proteins, the molecular underpinnings of G protein activation remain elusive. To characterize this mechanism we applied peptide amide hydrogen-deuterium exchange mass spectrometry (DXMS) to probe changes in the structure of the heterotrimeric G protein Gs (the stimulatory G protein for adenylyl cyclase) upon formation of a complex with agonist-bound β2 adrenergic receptor (β2AR). Our studies reveal structural links between the receptor binding surface and the nucleotide-binding pocket of Gs that undergo higher levels of hydrogen-deuterium exchange (HX) than would be predicted from the crystal structure of the β2AR-Gs complex. Together with x-ray crystallographic and electron microscopic data of the β2AR-Gs complex (ref 2 and Westfield et al, manuscript submitted), we provide a rationale for a mechanism of nucleotide exchange whereby the receptor perturbs the structure of the amino-terminal region of α-subunit of Gs and consequently alters the ‘P-loop’ that binds the β-phosphate in GDP. As with the ras-family of small molecular weight G proteins, P-loop stabilization and β-phosphate coordination are key determinants of GDP (and GTP) binding affinity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.