The mammary gland undergoes significant remodeling during pregnancy and lactation, which is fuelled by controlled mammary stem cell (MaSC) proliferation. The scarcity of human lactating breast tissue specimens and the low numbers and quiescent state of MaSCs in the resting breast have hindered understanding of both normal MaSC dynamics and the molecular determinants that drive their aberrant self-renewal in breast cancer. Here, we demonstrate that human breastmilk contains stem cells (hBSCs) with multilineage properties. Breastmilk cells from different donors displayed variable expression of pluripotency genes normally found in human embryonic stem cells (hESCs). These genes included the transcription factors (TFs) OCT4, SOX2, NANOG, known to constitute the core self-renewal circuitry of hESCs. When cultured in the presence of mouse embryonic feeder fibroblasts, a population of hBSCs exhibited an encapsulated ESC-like colony morphology and phenotype and could be passaged in secondary and tertiary clonogenic cultures. While self-renewal TFs were found silenced in the normal resting epithelium, they were dramatically upregulated in breastmilk cells cultured in 3D spheroid conditions. Furthermore, hBSCs differentiated in vitro into cell lineages from all three germ layers. These findings provide evidence that breastmilk represents a novel and noninvasive source of patient-specific stem cells with multilineage potential and establish a method for expansion of these cells in culture. They also highlight the potential of these cells to be used as novel models to understand adult stem cell plasticity and breast cancer, with potential use in bioengineering and tissue regeneration. Stem Cells2012;30:2164–2174
In previous studies we have developed Cys 2 -His 2 zinc finger domains that specifically recognized each of the 16 5-GNN-3 DNA target sequences and could be used to assemble six-finger proteins that bind 18-base pair DNA sequences (Beerli, R. R., Dreier, B., and Barbas, C. F., III (2000) Proc. Natl. Acad. Sci. U. S. A. 97, 1495-1500). Such proteins provide the basis for the construction of artificial transcription factors to study gene/function relationships in the post-genomic era. Central to the universal application of this approach is the development of zinc finger domains that specifically recognize each of the 64 possible DNA triplets. Here we describe the construction of a novel phage display library that enables the selection of zinc finger domains recognizing the 5-ANN-3 family of DNA sequences. Library selections provided domains that in most cases showed binding specificity for the 3-base pair target site that they were selected to bind. These zinc finger domains were used to construct 6-finger proteins that specifically bound their 18-base pair target site with affinities in the pM to low nM range. When fused to regulatory domains, these proteins containing various numbers of 5-ANN-3 domains were capable of specific transcriptional regulation of a reporter gene and the endogenous human ERBB-2 and ERBB-3 genes. These results suggest that modular DNA recognition by zinc finger domains is not limited to the 5-GNN-3 family of DNA sequences and can be extended to the 5-ANN-3 family. The domains characterized in this work provide for the rapid construction of artificial transcription factors, thereby greatly increasing the number of sequences and genes that can be targeted by DNA-binding proteins built from pre-defined zinc finger domains.The study of protein-DNA interactions is central to our understanding of the regulation of genes and the flow of genetic information characteristic of life. One practical application of the development of a protein-DNA recognition system is the construction of artificial transcription factors that might be used to purposefully regulate gene expression. We have demonstrated that gene expression can be specifically altered through the use of designed polydactyl zinc finger transcription factors that bind 18 base pairs (bp) 1 of DNA sequence. Because of their extended DNA recognition site, these proteins have the potential to be genome-specific transcriptional regulators (1, 2). Targeting of only 9 bp of sequence can also result in gene regulation wherein chromatin structure provides for an additional level of specificity (3, 4). Because a universal system for gene regulation would provide many new opportunities in basic and applied biology and medicine, the development of such a system is of considerable interest.Two key features have made Cys 2 -His 2 zinc finger domains the most promising DNA recognition motifs for the construction of artificial transcription factors, modular structure, and modular recognition. Each domain consists of ϳ30 amino acids and folds into a ␣ ...
An obstacle in the treatment of human diseases such as cancer is the inability to selectively and effectively target historically undruggable targets such as transcription factors. Here, we employ a novel technology using artificial transcription factors (ATFs) to epigenetically target gene expression in cancer cells. We show that site-specific DNA methylation and long-term stable repression of the tumor suppressor Maspin and the oncogene SOX2 can be achieved in breast cancer cells via zinc-finger ATFs targeting DNA methyltransferase 3a (DNMT3a) to the promoters of these genes. Using this approach, we show Maspin and SOX2 downregulation is more significant as compared with transient knockdown, which is also accompanied by stable phenotypic reprogramming of the cancer cell. These findings indicate that multimodular Zinc Finger Proteins linked to epigenetic editing domains can be used as novel cell resources to selectively and heritably alter gene expression patterns to stably reprogram cell fate.
The transcription factor (TF) SOX2 is essential for the maintenance of pluripotency and self-renewal in embryonic stem cells. In addition to its normal stem cell function, SOX2 over-expression is associated with cancer development. The ability to selectively target this and other oncogenic TFs in cells, however, remains a significant challenge due to the ‘undruggable’ characteristics of these molecules. Here, we employ a zinc finger (ZF)-based artificial TF (ATF) approach to selectively suppress SOX2 gene expression in cancer cells. We engineered four different proteins each composed of 6ZF arrays designed to bind 18 bp sites in the SOX2 promoter and enhancer region, which controls SOX2 methylation. The 6ZF domains were linked to the Kruppel Associated Box (SKD) repressor domain. Three engineered proteins were able to bind their endogenous target sites and effectively suppress SOX2 expression (up to 95% repression efficiencies) in breast cancer cells. Targeted down-regulation of SOX2 expression resulted in decreased tumor cell proliferation and colony formation in these cells. Furthermore, induced expression of an ATF in a mouse model inhibited breast cancer cell growth. Collectively, these findings demonstrate the effectiveness and therapeutic potential of engineered ATFs to mediate potent and long-lasting down-regulation of oncogenic TF expression in cancer cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.