Aurora B is a mitotic checkpoint kinase that plays a pivotal role in the cell cycle, ensuring correct chromosome segregation and normal progression through mitosis. Aurora B is overexpressed in many types of human cancers, which has made it an attractive target for cancer therapies. Tumor suppressor p53 is a genome guardian and important negative regulator of the cell cycle. Whether Aurora B and p53 are coordinately regulated during the cell cycle is not known. We report that Aurora B directly interacts with p53 at different subcellular localizations and during different phases of the cell cycle (for instance, at the nucleus in interphase and the centromeres in prometaphase of mitosis). We show that Aurora B phosphorylates p53 at S183, T211, and S215 to accelerate the degradation of p53 through the polyubiquitination–proteasome pathway, thus functionally suppressing the expression of p53 target genes involved in cell cycle inhibition and apoptosis (e.g., p21 and PUMA). Pharmacologic inhibition of Aurora B in cancer cells with WT p53 increased p53 protein level and expression of p53 target genes to inhibit tumor growth. Together, these results define a mechanism of p53 inactivation during the cell cycle and imply that oncogenic hyperactivation or overexpression of Aurora B may compromise the tumor suppressor function of p53. We have elucidated the antineoplastic mechanism for Aurora B kinase inhibitors in cancer cells with WT p53.
Hyperpolarized [1-13C]-pyruvate has shown tremendous promise as an agent for imaging tumor metabolism with unprecedented sensitivity and specificity. Imaging hyperpolarized substrates by magnetic resonance is unlike traditional MRI because signals are highly transient and their spatial distribution varies continuously over their observable lifetime. Therefore, new imaging approaches are needed to ensure optimal measurement under these circumstances. Constrained reconstruction algorithms can integrate prior information, including biophysical models of the substrate/target interaction, to reduce the amount of data that is required for image analysis and reconstruction. In this study, we show that metabolic MRI with hyperpolarized pyruvate is biased by tumor perfusion, and present a new pharmacokinetic model for hyperpolarized substrates that accounts for these effects. The suitability of this model is confirmed by statistical comparison to alternates using data from 55 dynamic spectroscopic measurements in normal animals and murine models of anaplastic thyroid cancer, glioblastoma, and triple-negative breast cancer. The kinetic model was then integrated into a constrained reconstruction algorithm and feasibility was tested using significantly under-sampled imaging data from tumor-bearing animals. Compared to naïve image reconstruction, this approach requires far fewer signal-depleting excitations and focuses analysis and reconstruction on new information that is uniquely available from hyperpolarized pyruvate and its metabolites, thus improving the reproducibility and accuracy of metabolic imaging measurements.
The immunopathogenesis mechanism of dengue virus (DV) infection remains elusive. We previously showed that the target of DV in humans is dendritic cells (DCs), the primary sentinels of immune system. We also observed that despite the significant amount of IFN-α induced; DV particles remain massively produced from infected DCs. It suggests that DV may antagonize the antiviral effect of IFN-α. Recent work in animal studies demonstrated the differential critical roles of antiviral cytokines, namely IFN-α/IFN-β and IFN-γ, in blocking early viral production and in preventing viral-mediated disease, respectively. In this study, we examined the effects of IFN-α and IFN-γ in DV infection of monocyte-derived DCs. We showed that the preinfection treatment with either IFN-α or IFN-γ effectively armed DCs and limited viral production in infected cells. However, after infection, DV developed mechanisms to counteract the protection from lately added IFN-α, but not IFN-γ. Such a selective antagonism on antiviral effect of IFN-α, but not IFN-γ, correlated with down-regulated tyrosine-phosphorylation and DNA-binding activities of STAT1 and STAT3 transcription factors by DV. Furthermore, subsequent studies into the underlying mechanisms revealed that DV attenuated IFN-α-induced tyrosine-phosphorylation of Tyk2, an upstream molecule of STAT activation, but had no effect on expression of both IFN-α receptor 1 and IFN-α receptor 2. Moreover, DV infection by itself could activate STAT1 and STAT3 through IFN-α-dependent and both IFN-α-dependent and IFN-α-independent mechanisms, respectively. These observations provide very useful messages with physiological significance in investigation of the pathogenesis, the defense mechanisms of human hosts and the therapeutic considerations in DV infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.