We conducted a source apportionment and investigated the atmospheric behavior of carbonaceous aerosols during hazy and normal days using radiocarbon ( 14 C) and biomass burning/secondary organic aerosol (SOA) tracers during winter in Guangzhou, China. Haze episodes were formed either abruptly by local emissions or through the accumulation of particles transported from other areas. The average contributions of fossil carbon to elemental carbon (EC), water-insoluble organic carbon, and water-soluble organic carbon were 71 ± 10%, 40 ± 6% and 33 ± 3%, respectively. High contributions of fossil carbon to EC (80−90%) were observed for haze samples that were substantially impacted by local emissions, as were the highest (lowest) ratios for NO 3 −
Samples of fine particulate matter (PM 2.5 ) were collected during July 2009 to March 2010 at a regional background site in East China. The mass concentrations of organic carbon (OC) and elemental carbon (EC) were characterized by the highest levels in winter (December to February) and the lowest abundances in summer (June to August). Conversely, the concentrations of levoglucosan were higher in summer than in winter. The observations were associated to the anthropogenic air pollutions (predominantly fossil-fuel combustions) transport from the center and north China with the northwest winds in winter and large contribution of the open biomass burning activities in South China and East China in summer, which was evident by air-mass trajectories and MODIS satellite fire counts. To assign fossil and nonfossil contributions of carbonaceous matters, the radiocarbon contents in water-insoluble OC (WINSOC) and EC in 4 combined samples representing four seasons were analyzed using the isolation system established in China. The results indicated that biomass burning and biogenic sources (59%) were the major contribution to the WINSOC, whereas fossil fuel (78%) was the dominant contributor to the refractory EC at this site. The source variation obtained by radiocarbon was consistent with other indicators, such as the OC/EC ratios and the levoglucosan concentration. Biomass burning and biogenic emissions were found to predominate in the summer and autumn, whereas fossil fuel emissions predominate in winter and spring.
Humic-like substances (HULIS) are a class of high molecular weight, light-absorbing compounds that are highly related to brown carbon (BrC). In this study, the sources and compositions of HULIS isolated from fine particles collected in Beijing, China during the 2014 Asia-Pacific Economic Cooperation (APEC) summit were characterized based on carbon isotope (C and C) and Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS) analyses, respectively. HULIS were the main light-absorbing components of water-soluble organic carbon (WSOC), accounting for 80.2 ± 6.1% of the WSOC absorption capacity at 365 nm. The carbon isotope data showed that HULIS had a lower non-fossil contribution (53 ± 4%) and were less enriched with C (-24.2 ± 0.6‰) relative to non-HULIS (62 ± 8% and -20.8 ± 0.3‰, respectively). The higher relative intensity fraction of sulfur-containing compounds in HULIS before and after APEC was attributed to higher sulfur dioxide levels emitted from fossil fuel combustion, whereas the higher fraction of nitrogen-containing compounds during APEC may have been due to the relatively greater contribution of non-fossil compounds or the influence of nitrate radical chemistry. The results of investigating the relationships among the sources, elemental compositions, and optical properties of HULIS demonstrated that the light absorption of HULIS appeared to increase with increasing unsaturation degree, but decrease with increasing oxidation level. The unsaturation of HULIS was affected by both sources and aging level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.