The present study was to investigate whether sulforaphane (SFN) can prevent diabetic nephropathy in type 1 diabetic mouse model induced by multiple low-dose streptozotocin. Diabetic and age-matched control mice were given SFN at 0.5 mg/kg body weight daily for 3 months. At the end of 3-month SFN treatment, the diabetic nephropathy, shown by renal inflammation, oxidative damage, fibrosis, and dysfunction, was significantly prevented along with an elevation of renal Nrf2 expression and transcription in diabetes/SFN group compared with diabetic group. However, this renal prevention by SFN was not seen when the 3-month SFN-treated diabetic mice were aged for additional 3 months without further SFN treatment. Nrf2-mediated renal protective effects in diabetes were evaluated in human renal tubular HK11 cells transfected with control and Nrf2 siRNA and treated with 27.5 mM mannitol or high glucose plus palmitate (300 μM). Blockade of Nrf2 expression completely abolished SFN prevention of the profibrotic effect induced by high glucose plus palmitate. These results support that renal Nrf2 expression and its transcription play important roles in SFN prevention of diabetes-induced renal damage. However, the SFN preventive effect on diabetes-induced renal pathogeneses is not sustained, suggesting the requirement of continual use of SFN for its sustained effect.
Increasing evidence from human and laboratory studies showed the effect of zinc (Zn) on diabetic complications. Nuclear factor-erythroid 2-related factor 2 (Nrf2) plays important role in the prevention of oxidative damage. This study was to define whether Zn statues (deficiency or supplement) affect the Nrf2 expression and function, and also affect the damage severity of human renal tubular (HK11) cells exposed to high glucose (HG) with palmitate (Pal) and kidney of diabetic mice induced by multiple low-dose streptozotocins. For Zn deficiency diabetic mice were treated with Zn chelator PTEN at 5 mg/kg bw daily for 4 months. Results showed that HG/Pal significantly increased the expression of pro-fibrotic mediators, connective tissue growth factor and PAI-1, in HK11 cells, which was exacerbated by TPEN that depleted intracellular free Zn and decreased Nrf2 expression and transcription. Zn supplement prevented the effects of TPEN and also increased Akt and GSK-3β phosphorylation with a decrease in Nrf2 nuclear exporter, Fyn. All these effects of Zn were abolished by Akt inhibitor. Therefore, Zn up-regulates Nrf2 function via activating Akt-mediated inhibition of Fyn function. Treatment of diabetic mice with TPEN decreased renal Zn level and Nrf2 expression and transcription, with an exacerbation of renal oxidative damage, inflammation and fibrosis. These results suggest the essentiality of Zn for Nrf2 expression and transcription function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.