This paper presents a generalization of standard effect systems that we call contextual effects. A traditional effect system computes the effect of an expression e. Our system additionally computes the effects of the computational context in which e occurs. More specifically, we compute the effect of the computation that has already occurred (the prior effect) and the effect of the computation yet to take place (the future effect).Contextual effects are useful when the past or future computation of the program is relevant at various program points. We present two substantial examples. First, we show how prior and future effects can be used to enforce transactional version consistency (TVC), a novel correctness property for dynamic software updates. TVC ensures that programmer-designated transactional code blocks appear to execute entirely at the same code version, even if a dynamic update occurs in the middle of the block. Second, we show how future effects can be used in the analysis of multi-threaded programs to find thread-shared locations. This is an essential step in applications such as data race detection.
We present the Parallel, Forward-Backward with Pruning (PFBP) algorithm for feature selection (FS) for Big Data of high dimensionality. PFBP partitions the data matrix both in terms of rows as well as columns. By employing the concepts of p-values of conditional independence tests and meta-analysis techniques, PFBP relies only on computations local to a partition while minimizing communication costs, thus massively parallelizing computations. Similar techniques for combining local computations are also employed to create the final predictive model. PFBP employs asymptotically sound heuristics to make early, approximate decisions, such as Early Dropping of features from consideration in subsequent iterations, Early Stopping of consideration of features within the same iteration, or Early Return of the winner in each iteration. PFBP provides asymptotic guarantees of optimality for data distributions faithfully representable by a causal network (Bayesian network or maximal ancestral graph). Empirical analysis confirms a super-linear speedup of the algorithm with increasing sample size, linear scalability with respect to the number of features and processing cores. An extensive comparative evaluation also demonstrates the effectiveness of PFBP against other algorithms in its class. The heuristics presented are general and could potentially be employed to other greedy-type of FS algorithms. An application on simulated Single Nucleotide Polymorphism (SNP) data with 500K samples is provided as a use case.
Abstract. We present BDDT, a task-parallel runtime system that dynamically discovers and resolves dependencies among parallel tasks. BDDT allows the programmer to specify detailed task footprints on any memory address range, multidimensional array tile or dynamic region. BDDT uses a block-based dependence analysis with arbitrary granularity. The analysis is applicable to existing C programs without having to restructure object or array allocation, and provides flexibility in array layouts and tile dimensions. We evaluate BDDT using a representative set of benchmarks, and we compare it to SMPSs (the equivalent runtime system in StarSs) and OpenMP. BDDT performs comparable to or better than SMPSs and is able to cope with task granularity as much as one order of magnitude finer than SMPSs. Compared to OpenMP, BDDT performs up to 3.9× better for benchmarks that benefit from dynamic dependence analysis. BDDT provides additional data annotations to bypass dependence analysis. Using these annotations, BDDT outperforms OpenMP also in benchmarks where dependence analysis does not discover additional parallelism, thanks to a more efficient implementation of the runtime system.
Today, a considerable proportion of the public political discourse on nationwide elections proceeds in Online Social Networks. Through analyzing this content, we can discover the major themes that prevailed during the discussion, investigate the temporal variation of positive and negative sentiment and examine the semantic proximity of these themes. According to existing studies, the results of similar tasks are heavily dependent on the quality and completeness of dictionaries for linguistic preprocessing, entity discovery and sentiment analysis. Additionally, noise reduction is achieved with methods for sarcasm detection and correction. Here we report on the application of these methods on the complete corpus of tweets regarding two local electoral events of worldwide impact: the Greek referendum of 2015 and the subsequent legislative elections. To this end, we compiled novel dictionaries for sentiment and entity detection for the Greek language tailored to these events. We subsequently performed volume analysis, sentiment analysis, sarcasm correction and topic modeling. Results showed that there was a strong anti-austerity sentiment accompanied with a critical view on European and Greek political actions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.