Graphical abstract
The coronavirus disease-19 has left a permanent mark on the history of the human race. Severe acute respiratory syndrome coronavirus-2 is a positive-sense single-stranded RNA virus, first reported in Wuhan, China, in December 2019 and from there took over the world. Being highly susceptible to mutations, the virus's numerous variants started to appear, and some were more lethal and infectious than the parent. The effectiveness of the vaccine is also affected severely against the new variant. In this study, the infectious mechanism of the coronavirus is explained with a focus on different variants and their respective mutations, which play a critical role in the increased transmissibility, infectivity, and immune escape of the virus. As India has already faced the second wave of the pandemic, the future outlook on the likeliness of a third wave with respect to the Indian variants such as kappa, delta, and Delta Plus is also discussed. This review article aims to reflect the catastrophe of the variants of SARS-CoV-2 and the possibility of developing even more severe variants in the near future.
Plasmodium parasites, the causative agents of malaria, possess a distinctive membranous structure of flattened alveolar vesicles supported by a proteinaceous network, and referred to as the inner membrane complex (IMC). The IMC has a role in actomyosin-mediated motility and host cell invasion. Here, we examine the location, protein interactome and function of PhIL1, an IMC-associated protein on the motile and invasive stages of both human and rodent parasites. We show that PhIL1 is located in the IMC in all three invasive (merozoite, ookinete-, and sporozoite) stages of development, as well as in the male gametocyte and locates both at the apical and basal ends of ookinete and sporozoite stages. Proteins interacting with PhIL1 were identified, showing that PhIL1 was bound to only some proteins present in the glideosome motor complex (GAP50, GAPM1–3) of both P. falciparum and P. berghei. Analysis of PhIL1 function using gene targeting approaches indicated that the protein is required for both asexual and sexual stages of development. In conclusion, we show that PhIL1 is required for development of all zoite stages of Plasmodium and it is part of a novel protein complex with an overall composition overlapping with but different to that of the glideosome.
This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.