Objective-The objective of this work was to causatively link biofilm properties of bacterial infection to specific pathogenic mechanisms in wound healing.Background-Staphylococcus aureus is one of the four most prevalent bacterial species identified in chronic wounds. Causatively linking wound pathology to biofilm properties of bacterial infection is challenging. Thus, isogenic mutant stains of S. aureus with varying degree of biofilm formation ability was studied in an established preclinical porcine model of wound biofilm infection.
Collagen containing wound-care dressings are extensively used. However, the mechanism of action of these dressings remain unclear. Earlier studies utilizing a modified collagen gel (MCG) dressing demonstrated improved vascularization of ischemic wounds and better healing outcomes. Wound macrophages are pivotal in facilitating wound angiogenesis and timely healing. The current study was designed to investigate the effect of MCG on wound macrophage phenotype and function. MCG augmented recruitment of macrophage at the wound-site, attenuated pro-inflammatory and promoted anti-inflammatory macrophage polarization. Additionally, MCG increased anti-inflammatory IL-10, IL-4 and pro-angiogenic VEGF production, indicating a direct role of MCG in resolving wound inflammation and improving angiogenesis. At the wound-site, impairment in clearance of apoptotic cell bioburden enables chronic inflammation. Engulfment of apoptotic cells by macrophages (efferocytosis) resolves inflammation via a miR-21-PDCD4-IL-10 pathway. MCG-treated wound macrophages exhibited a significantly bolstered efferocytosis index. Such favorable outcome significantly induced miR-21 expression. MCG-mediated IL-10 production was dampened under conditions of miR-21 knockdown pointing towards miR-21 as a causative factor. Pharmacological inhibition of JNK attenuated IL-10 production by MCG, implicating miR-21-JNK pathway in MCG-mediated IL-10 production by macrophages. This work provides direct evidence demonstrating that a collagen-based wound-care dressing may influence wound macrophage function and therefore modify wound inflammation outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.