Hybrid lead halide perovskites exhibit carrier properties that resemble those of pristine nonpolar semiconductors despite static and dynamic disorder, but how carriers are protected from efficient scattering with charged defects and optical phonons is unknown. Here, we reveal the carrier protection mechanism by comparing three single-crystal lead bromide perovskites: CHNHPbBr, CH(NH)PbBr, and CsPbBr We observed hot fluorescence emission from energetic carriers with ~10-picosecond lifetimes in CHNHPbBr or CH(NH)PbBr, but not in CsPbBr The hot fluorescence is correlated with liquid-like molecular reorientational motions, suggesting that dynamic screening protects energetic carriers via solvation or large polaron formation on time scales competitive with that of ultrafast cooling. Similar protections likely exist for band-edge carriers. The long-lived energetic carriers may enable hot-carrier solar cells with efficiencies exceeding the Shockley-Queisser limit.
The excellent intrinsic optoelectronic properties of methylammonium lead halide perovskites (MAPbX3, X = Br, I), such as high photoluminescence quantum efficiency, long carrier lifetime, and high gain coupled with the facile solution growth of nanowires make them promising new materials for ultralow-threshold nanowire lasers. However, their photo and thermal stabilities need to be improved for practical applications. Herein, we report a low-temperature solution growth of single crystal nanowires of formamidinium lead halide perovskites (FAPbX3) that feature red-shifted emission and better thermal stability compared to MAPbX3. We demonstrate optically pumped room-temperature near-infrared (∼820 nm) and green lasing (∼560 nm) from FAPbI3 (and MABr-stabilized FAPbI3) and FAPbBr3 nanowires with low lasing thresholds of several microjoules per square centimeter and high quality factors of about 1500-2300. More remarkably, the FAPbI3 and MABr-stabilized FAPbI3 nanowires display durable room-temperature lasing under ∼10(8) shots of sustained illumination of 402 nm pulsed laser excitation (150 fs, 250 kHz), substantially exceeding the stability of MAPbI3 (∼10(7) laser shots). We further demonstrate tunable nanowire lasers in wider wavelength region from FA-based lead halide perovskite alloys (FA,MA)PbI3 and (FA,MA)Pb(I,Br)3 through cation and anion substitutions. The results suggest that formamidinium lead halide perovskite nanostructures could be more promising and stable materials for the development of light-emitting diodes and continuous-wave lasers.
A charge carrier in a lead halide perovskite lattice is protected as a large polaron responsible for the remarkable photophysical properties, irrespective of the cation type. All-inorganic-based APbX perovskites may mitigate the stability problem for their applications in solar cells and other optoelectronics.
In conventional semiconductor solar cells, carriers are extracted at the band edges and the excess electronic energy (E*) is lost as heat. If E* is harvested, power conversion efficiency can be as high as twice the Shockley-Queisser limit. To date, materials suitable for hot carrier solar cells have not been found due to efficient electron/optical-phonon scattering in most semiconductors, but our recent experiments revealed long-lived hot carriers in single-crystal hybrid lead bromide perovskites. Here we turn to polycrystalline methylammonium lead iodide perovskite, which has emerged as the material for highly efficient solar cells. We observe energetic electrons with excess energy ⟨E*⟩ ≈ 0.25 eV above the conduction band minimum and with lifetime as long as ∼100 ps, which is 2-3 orders of magnitude longer than those in conventional semiconductors. The energetic carriers also give rise to hot fluorescence emission with pseudo-electronic temperatures as high as 1900 K. These findings point to a suppression of hot carrier scattering with optical phonons in methylammonium lead iodide perovskite. We address mechanistic origins of this suppression and, in particular, the correlation of this suppression with dynamic disorder. We discuss potential harvesting of energetic carriers for solar energy conversion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.