Autologous hematopoietic stem cell transplantation (Auto-HSCT) with gene-modification techniques represents a potential cure for multiple genetic blood diseases. Despite its broad curative potential, auto-gene modified HSCT is currently limited due to morbidity/mortality from cytotoxic chemotherapy-based conditioning, including risks of secondary malignancies, organ toxicity, and infertility. To overcome these limitations, we have developed antibody drug conjugates (ADC) targeting CD117 (C-KIT) to specifically deplete the hematopoietic stem and progenitor cells (HSPC) prior to auto-gene modified HSCT. We have previously shown that the anti-CD117 ADC is highly effective at killing human CD117+ cells in vitro and in vivo (Pearse et al., Blood 2018 132:3314). To validate CD117 as an appropriate antigen for targeted ADC-mediated depletion prior to HSCT, we developed an optimized non-human primate (NHP) tool anti-CD117 ADC and evaluated it in an auto-gene modified HSCT in the rhesus macaque model. The tool CD117-ADC is potent on primary human and NHP CD34+ cells in vitro with EC50 of 0.2 and 0.09 pM respectively (Figure 1A). Humanized NSG mice treated with the tool CD117-ADC had full depletion of human HSPCs in the bone marrow 21 days after a single administration of the ADC, while maintaining the peripheral immune cells. We next tested the efficacy and safety of the tool CD117-ADC in NHPs. A single administration of the tool CD117-ADC was fully myeloablative (>99% HSPC depletion) and comparable to HSPC depletion observed following busulfan conditioning (6 mg/kg, once daily for 4 consecutive days). There was no effect on the peripheral and bone marrow lymphocytes and the ADC was well tolerated. To facilitate the use in HSCT, the tool CD117-ADC was engineered to have a fast clearance and in this study the half-life was <10 hours. Based on these encouraging results, we explored whether the tool CD117-ADC could enable engraftment of autologous gene modified hematopoietic stem cells in the rhesus macaque model. A single rhesus macaque was mobilized with granulocyte-colony stimulating factor (G-CSF, 20 mcg/kg/day x 5) and plerixafor (1 mg/kg on day 5 of G-CSF) prior to apheresis. The isolated CD34+ cells were transduced with a lentivirus encoding the β-globin gene and cryopreserved. The tool CD117-ADC was dosed on day -6 and the cryopreserved gene modified cells were thawed and infused (3.3 x 106 CD34+ cells/kg) on day 0. A bone marrow aspirate analyzed on the day of infusion (day 0) demonstrated >99% depletion of the HSPCs and preserved of the bone marrow lymphocytes (Figure 1B). The primate engrafted neutrophils and platelets on day 8 and 10 respectively, and the peripheral lymphocytes were maintained throughout the transplant (Figure 1C). The gene marking in the granulocytes was detectable at day 9, and additional follow up and data from additional animals will be presented. In summary, we have developed a tool CD117 ADC that shows potent activity on NHP CD34+ cells. This optimized CD117-ADC is fully myeloablative with a single dose in NHPs, has a favorable safety profile, spares the immune system and is cleared rapidly as designed. In a rhesus model of autologous gene modified HSCT, a single dose of the ADC enables engraftment of auto-gene modified HSC. These proof of concept studies validate the use of CD117-ADC for targeted HSPC depletion prior to transplant and support its use as a new conditioning agent for autologous gene modified HSCT. This targeted approach for safer conditioning could improve the risk benefit profile for patients undergoing stem cell transplant and enable more patients to benefit from these potentially curative therapies. Disclosures Pearse: Magenta Therapeutics: Employment, Equity Ownership, Patents & Royalties. McDonough:Magenta Therapeutics: Employment, Equity Ownership, Patents & Royalties. Proctor:Magenta Therapeutics: Employment, Equity Ownership. Panwar:Magenta Therapeutics: Employment, Equity Ownership. Sarma:Magenta Therapeutics: Employment, Equity Ownership. Kien:Magenta Therapeutics: Employment, Equity Ownership. Latimer:Magenta Therapeutics: Employment, Equity Ownership. Dushime:Magenta Therapeutics: Employment, Equity Ownership. Hyzy:Magenta Therapeutics: Employment, Equity Ownership. Brooks:Magenta Therapeutics: Employment, Equity Ownership. Palchaudhuri:Magenta Therapeutics: Employment, Equity Ownership. Li:Magenta Therapeutics: Employment, Equity Ownership. Sawant:Magenta Therapeutics: Employment, Equity Ownership. McDonagh:Magenta Therapeutics: Employment. Boitano:Magenta Therapeutics: Employment, Equity Ownership, Patents & Royalties. Cooke:Magenta Therapeutics: Employment, Equity Ownership, Patents & Royalties.
Background: Genotoxic conditioning prior to allogeneic and autologous bone marrow transplantation (BMT) limits the use of these potentially curative treatments due to risks of regimen-related morbidities and mortality, including risks of organ toxicity, infertility, and secondary malignancies. CD117, which is specifically expressed on hematopoietic stem cells (HSCs) and progenitors is rapidly internalized and is an ideal target for an antibody drug conjugate (ADC) based approach to conditioning. We have previously shown that a single dose of an anti-CD117 ADC depleted >95% of bone marrow HSCs in a humanized mouse model and reduced disease burden while extending survival in an AML tumor model (Hartigan et al., Blood 2017 130:1894). The aim of this translational study was to develop a potent anti-CD117 ADC highly effective in eliminating host HSCs with a short half-life and minimal adverse side effects in a non-human primate (NHP) model. Methods: Three different DNA-damaging cytotoxic payloads and amanitin (AM) were site specifically conjugated to an anti-CD117 antibody. The ADCs were titrated and evaluated for in vitro cytotoxicity using human bone marrow CD34+ cells. The ADCs were administered in ascending doses to humanized NSG mice. HSC depletion and immunophenotype of the human cells in the peripheral blood was determined by flow cytometry. For amanitin conjugates, NHP HSC depletion was evaluated in male cynomolgus monkeys in single ascending doses (3/group). HSC content in the bone marrow was monitored by flow cytometry and colony-forming unit (CFU) analysis on day 7 or 14 and 56 post dosing. Hematology and clinical chemistries were evaluated throughout the two-month study. Results: Of the toxins evaluated, only anti-CD117 conjugated with the RNA polymerase II inhibitor amanitin resulted in >90% depletion of human HSCs in humanized NSG mice at 0.3 mg/kg. The AM-conjugates also demonstrated a broad therapeutic window in this model (therapeutic index of >120). As a proof-of-concept for the depletion of HSCs in large animals, a single i.v. dose escalation study was performed with the cross-reactive anti-CD117-AM in NHP. On-target, dose-dependent decreases in phenotypic HSCs and CFUs were observed in the bone marrow at day 7 post anti-CD117-AM dosing with >95% HSC depletion observed with a single dose of 0.3 mg/kg (Fig. 1). In the periphery, a dose-dependent transient decrease in reticulocytes was observed at day 4 with a neutrophil and monocyte nadir at day 18. The depth and duration of the depletion was also dose-dependent. The anti-CD117-AM induced depletion was on target and amanitin dependent as the unconjugated antibody and isotype-AM had no effect. Notably, white blood cell and lymphocyte counts were stable through day 56, demonstrating that this strategy will spare the adaptive immune system. Thrombocytopenia occurred 4-8 days post infusion and was dose-dependent, transient and reversible. This also occurred with the isotype-AM, suggesting the effect was off-target. Because the half-life of the anti-CD117-AM was 5 days, a second dose escalation study with anti-CD117-AM engineered to have a short half-life (~18 h) was performed in NHPs. The short half-life anti-CD117-AM demonstrated similar potency on all cell parameters at 0.3 mg/kg and was well tolerated at the effective dose. As expected, the short half-life anti-CD117-AM was rapidly cleared with a half-life of 15-18 h. In both studies, a transient dose dependent elevation of liver enzymes was observed in groups treated with the highest doses of isotype-AM, anti-CD117-AM, and the short half-life anti-CD117-AM. Conclusions: Anti-CD117-AM exhibited potent elimination of NHP HSCs and progenitors in vivo. The potency of short half-life anti-CD117-AM was comparable, providing a model for target cell depletion and rapid clearance prior to BMT. Both ADCs were well tolerated at the efficacious doses. This strategy preserves the adaptive immune system with delayed onset of neutrophil nadir (18 days), potentially shortening the period of neutropenia. Targeted depletion of hematopoietic cell subtypes with limited off-target effects could provide a significant improvement in standard-of-care approaches to patient preparation prior to HSC transplant. Disclosures Pearse: Magenta Therapeutics: Employment, Equity Ownership, Patents & Royalties. McDonough:Magenta Therapeutics: Employment, Equity Ownership. Proctor:Magenta Therapeutics: Employment, Equity Ownership. Panwar:Magenta Therapeutics: Employment, Equity Ownership, Patents & Royalties. Sarma:Magenta Therapeutics: Employment, Equity Ownership. McShea:Magenta Therapeutics: Employment, Equity Ownership. Kien:Magenta Therapeutics: Employment, Equity Ownership. Dushime:Magenta Therapeutics: Employment, Equity Ownership. Adams:Magenta Therapeutics: Employment, Equity Ownership. Hyzy:Magenta Therapeutics: Employment, Equity Ownership. Brooks:Magenta Therapeutics: Employment, Equity Ownership. Palchaudhuri:Magenta Therapeutics: Employment, Equity Ownership, Patents & Royalties; Harvard University: Patents & Royalties. Li:Magenta Therapeutics: Employment, Equity Ownership. Kallen:Magenta Therapeutics: Employment, Equity Ownership. Sawant:Magenta Therapeutics: Employment, Equity Ownership. McDonagh:Magenta Therapeutics: Employment, Equity Ownership, Patents & Royalties. Boitano:Magenta Therapeutics: Employment, Equity Ownership, Patents & Royalties. Cooke:Magenta Therapeutics: Employment, Equity Ownership, Patents & Royalties.
Introduction Bone Marrow Transplant (BMT) is a potentially curative treatment for malignant and non-malignant blood disorders and has demonstrated impressive outcomes in autoimmune diseases. Prior to BMT, patients are prepared with high-dose chemotherapy alone or with total body irradiation, and both are associated with early and late morbidities, such as infertility, secondary malignancies and organ toxicity; and substantial risk of mortality. This greatly limits the use of BMT in malignant and non-malignant conditions. To address these issues, we are developing antibody drug conjugates (ADCs) targeting hematopoietic stem cells (HSCs) and immune cells to more safely condition patients for BMT. Results To enable simultaneous HSC and immune cell depletion for BMT we investigated targeting human CD45, a protein expressed exclusively on nearly all blood cells including HSCs. Antibody discovery campaigns identified several antibodies with sub-nanomolar affinities for human and non-human primate (NHP) CD45. We then created anti-CD45 ADCs with drug payloads including DNA-damaging, tubulin-targeting and RNA polymerase-inhibiting molecules. An ADC developed with alpha-amanitin (an RNA polymerase II inhibitor) enabled potent in vitro killing of primary human CD34+ HSCs and immune cells (40-120 picomolar IC50s). With this anti-CD45 amanitin ADC (CD45-AM), we explored depletion of HSCs and immune cells in vivo using humanized NSG mice. A single dose of 1 or 3 mg/kg CD45-AM enabled >95% depletion of human CD34+ cells in the bone marrow as assessed 7 or 14 days post-administration (Figure, n = 3/group, p values < 0.05); >95% depletion of human B-, T- and myeloid cells was observed in the periphery and bone marrow (Figure, p values < 0.05). Control non-targeting isotype matched-ADCs and anti-CD45 antibody not bearing a toxin had minimal effect on either HSC or immune cells. In hematopoietic malignancies, an anti-CD45 ADC would ideally reduce disease burden and enable BMT. In a model of acute lymphoblastic leukemia (REH cell line, n = 10 mice/group), and 3 patient-derived models of FLT3+NPM1+ acute myeloid leukemia (n = 4-5 mice/group per model), a single dose of 1 mg/kg CD45-AM more than doubled the median survival and several mice survived disease-free (p values < 0.001). Anti-CD45 antibodies have been investigated for BMT conditioning in patients as naked antibodies that rely on Fc-effector function to deplete lymphocytes (Biol Blood Marrow Transplant. 2003 9(4): 273-81); or as radioimmunotherapy (Blood. 2006 107(5): 2184-2191). These agents demonstrated infusion-related toxicities likely due to effector function elicited by the wild-type IgG backbone. To address this issue, we created anti-CD45 antibodies with reduced Fc-gamma receptor binding that prevented cytokine release in vitro and in humanized mice. As BMT will likely require fast clearing ADCs to avoid depleting the incoming graft, we also created fast-half-life CD45-AM variants with a t½ of 8-15 hours in mice. To determine the safety and pharmacokinetic properties of regular and fast half-life Fc-silent variants in an immune-competent large animal we tested these in cynomolgus monkeys. Single doses (3 mg/kg, iv, n = 3/group) of fast and regular half-life Fc-silent unconjugated anti-CD45 antibodies were both well tolerated in cynomolgus monkeys and displayed pharmacokinetic properties suitable for BMT. Conclusion These results demonstrate that targeting CD45 with an amanitin ADC results in potent in vitro and in vivo human HSC and immune cell depletion. This new CD45-AM ADC also significantly reduced disease burden in multiple leukemia models. Our results indicate Fc-silencing may avoid infusion-related toxicities observed with previous CD45 mAbs. An alpha-amanitin ADC targeted to CD45 may be appropriate for preparing patients for BMT since we hypothesize it may i) be non-genotoxic; ii) effectively deplete both HSC and immune cells; iii) avoid bystander toxicity, due to amanitin's poor cell permeability as a free toxin; and iv) kill cycling and non-cycling cells, the latter being necessary for effective HSC depletion. As our anti-CD45 ADCs are cross-reactive, we are currently investigating their HSC and immune cell depletion activity in vivo in NHPs to enable further preclinical development of these transplant conditioning agents. Disclosures Palchaudhuri: Magenta Therapeutics: Employment, Equity Ownership, Patents & Royalties; Harvard University: Patents & Royalties. Pearse:Magenta Therapeutics: Employment, Equity Ownership, Patents & Royalties. Proctor:Magenta Therapeutics: Employment, Equity Ownership. Hyzy:Magenta Therapeutics: Employment, Equity Ownership. Aslanian:Magenta Therapeutics: Employment, Equity Ownership. McDonough:Magenta Therapeutics: Employment, Equity Ownership. Sarma:Magenta Therapeutics: Employment, Equity Ownership. Brooks:Magenta Therapeutics: Employment, Equity Ownership. Bhat:Magenta Therapeutics: Employment. Ladwig:Magenta Therapeutics: Employment, Equity Ownership. McShea:Magenta Therapeutics: Employment, Equity Ownership. Kallen:Magenta Therapeutics: Employment, Equity Ownership. Li:Magenta Therapeutics: Employment, Equity Ownership. Panwar:Magenta Therapeutics: Employment, Equity Ownership, Patents & Royalties. Dushime:Magenta Therapeutics: Employment, Equity Ownership. Sawant:Magenta Therapeutics: Employment, Equity Ownership. Adams:Magenta Therapeutics: Employment, Equity Ownership. Falahee:Magenta Therapeutics: Employment, Equity Ownership, Patents & Royalties. Lamothe:Magenta Therapeutics: Employment, Equity Ownership. Gabros:Magenta Therapeutics: Employment, Equity Ownership. Kien:Magenta Therapeutics: Employment, Equity Ownership. Gillard:Magenta Therapeutics: Employment, Equity Ownership. McDonagh:Magenta Therapeutics: Employment, Equity Ownership, Patents & Royalties. Boitano:Magenta Therapeutics: Employment, Equity Ownership, Patents & Royalties. Cooke:Magenta Therapeutics: Employment, Equity Ownership, Patents & Royalties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.