The relationship between the intragastric distribution, dilution, and emptying of meals and satiety was studied using noninvasive magnetic resonance imaging techniques in 12 healthy subjects with four polysaccharide test meals of varying viscosity and nutrient content as follows: 1) low-viscosity nonnutrient, 2) low-viscosity nutrient, 3) high-viscosity nonnutrient, and 4) high-viscosity nutrient. Increasing the nutrient content of the high-viscosity meal delayed gastric emptying from 46 +/- 9 to 76 +/- 6 min (P < 0.004), whereas increasing viscosity had a smaller effect. The volume of secretions within the stomach 60 min after ingestion was higher for the high-viscosity nutrient meal (P < 0.04). A simple model to calculate the total volume of secretion added to the test meal is presented. Color-coded dilution map images showed the heterogeneous process of progressive gastric dilution of high-viscosity meals, whereas low-viscosity meals were uniformly diluted. Fullness was found to be linearly related to total gastric volumes for the nutrient meals (R(2) = 0.98) and logarithmically related for the nonnutrient meals (R(2) = 0.96). Fullness was higher for high- compared with low-viscosity meals (P < 0.02), and with the nutrient meals this was associated with greater antral volumes (P < 0.05).
Normal meals are highly viscous, and viscosity is a key factor in influencing gastric emptying of food. However, the process of meal dilution and mixing is difficult to assess with the use of conventional methods. The aim of this study was to validate an in vivo, novel, noninvasive, echo-planar magnetic resonance imaging (EPI) technique, capable of monitoring the viscosity of a model meal, and to use this to investigate the effects of viscosity on gastric emptying, meal dilution and satiety. Healthy volunteers (n = 8) ingested 500 mL of locust bean gum (0.25, 0.5, 1.0 or 1.5 g/100 g), nonnutrient, liquid meals of varying viscosities, and labeled with a nonabsorbable marker, phenol red. Meal viscosity was calibrated against the water proton transverse relaxation rate (T(2)(-1)) in vitro before ingestion, thus viscosity was measured in vivo via EPI measurements of T(2)(-1). Viscosity and dilution were also measured directly using nasogastric aspirates. Gastric volumes as measured by EPI, fullness, appetite and hunger were also assessed serially. Before ingestion, the log of initial meal viscosity was linearly related to T(2)(-1) (n = 8, r(2) = 0.95). Similarly, T(2)(-1) measured in vivo was also linearly related to the viscosity of the aspirates (r(2) = 0.88). All meals underwent rapid dilution, leading to a reduction in viscosity, which was greatest for the most viscous meal (P < 0.01). Surprisingly, despite the fact that the initial meal viscosity varied 1000-fold, there was only a small delay in gastric emptying (P for trend < 0.05). The area under the curve for satiety increased with initial meal viscosity, whereas that for hunger decreased (P < 0.05). In conclusion, the viscosity of a meal in vivo can be measured noninvasively using EPI. The stomach responds to meal ingestion by rapid intragastric dilution, causing a reduction of meal viscosity, and gastric emptying is minimally delayed. However, increased viscosity is associated with more prolonged satiety.
Mathematical modeling of how physical factors alter gastric emptying is limited by lack of precise measures of the forces exerted on gastric contents. We have produced agar gel beads (diameter 1.27 cm) with a range of fracture strengths (0.15-0.90 N) and assessed their breakdown by measuring their half-residence time (RT(1/2)) using magnetic resonance imaging. Beads were ingested either with a high (HV)- or low (LV)-viscosity liquid nutrient meal. With the LV meal, RT(1/2) was similar for bead strengths ranging from 0.15 to 0.65 N but increased from 22 +/- 2 min (bead strength <0.65 N) to 65 +/- 12 min for bead strengths >0.65 N. With the HV meal, emptying of the harder beads was accelerated. The sense of fullness after ingesting the LV meal correlated linearly (correlation coefficient = 0.99) with gastric volume and was independently increased by the harder beads, which were associated with an increased antral diameter. We conclude that the maximum force exerted by the gastric antrum is close to 0.65 N and that gastric sieving is impaired by HV meals.
Heat (85 degrees C for 20 min) and pressure (600 MPa for 15 min) treatments were applied to skim milk fortified by addition of whey protein concentrate. Both treatments caused > 90 % denaturation of beta-lactoglobulin. During heat treatment this denaturation took place in the presence of intact casein micelles; during pressure treatment it occurred while the micelles were in a highly dissociated state. As a result micelle structure and the distribution of beta-lactoglobulin were different in the two milks. Electron microscopy and immunolabelling techniques were used to examine the milks after processing and during their transition to yogurt gels. The disruption of micelles by high pressure caused a significant change in the appearance of the milk which was quantified by measurement of the colour values L*, a* and b*. Heat treatment also affected these characteristics. Casein micelles are dynamic structures, influenced by changes to their environment. This was clearly demonstrated by the transition from the clusters of small irregularly shaped micelle fragments present in cold pressure-treated milk to round, separate and compact micelles formed on warming the milk to 43 degrees C. The effect of this transition was observed as significant changes in the colour indicators. During yogurt gel formation, further changes in micelle structure, occurring in both pressure and heat-treated samples, resulted in a convergence of colour values. However, the microstructure of the gels and their rheological properties were very different. Pressure-treated milk yogurt had a much higher storage modulus but yielded more readily to large deformation than the heated milk yogurt. These changes in micelle structure during processing and yogurt preparation are discussed in terms of a recently published micelle model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.