Diverse genetic, epigenetic, and developmental programs drive glioblastoma, an incurable and poorly understood tumor, but their precise characterization remains challenging. Here, we use an integrative approach spanning single-cell RNA-sequencing of 28 tumors, bulk genetic and expression analysis of 401 specimens from the The Cancer Genome Atlas (TCGA), functional approaches, and single-cell lineage tracing to derive a unified model of cellular states and genetic diversity in glioblastoma. We find that malignant cells in glioblastoma exist in four main cellular states that recapitulate distinct neural cell types, are influenced by the tumor microenvironment, and exhibit plasticity. The relative frequency of cells in each state varies between glioblastoma samples and is influenced by copy number amplifications of the CDK4, EGFR, and PDGFRA loci and by mutations in the NF1 locus, which each favor a defined state. Our work provides a blueprint for glioblastoma, integrating the malignant cell programs, their plasticity, and their modulation by genetic drivers.
Link to publication on Research at Birmingham portal General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. • Users may freely distribute the URL that is used to identify this publication. • Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. • User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?) • Users may not further distribute the material nor use it for the purposes of commercial gain. Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document. When citing, please reference the published version. Take down policy While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.
Cancer chromosomal instability (CIN) results from dynamic changes to chromosome number and structure. The resulting diversity in somatic copy number alterations (SCNA) may provide the variation necessary for cancer evolution. Multi-sample phasing and SCNA analysis of 1421 samples from 394 tumours across 24 cancer types revealed ongoing CIN resulting in pervasive SCNA heterogeneity. Parallel evolutionary events, causing disruption to the same genes, such as BCL9, ARNT/HIF1B, TERT and MYC, within separate subclones were present in 35% of tumours. Most recurrent losses occurred prior to whole genome doubling (WGD), a clonal event in 48% of tumours. However, loss of heterozygosity at the human leukocyte antigen locus and loss of 8p to a single haploid copy recurred at significant subclonal frequencies, even in WGD tumours, likely reflecting ongoing karyotype remodeling. Focal amplifications affecting 1q21 (BCL9, ARNT), 5p15.33 (TERT), 11q13.3 (CCND1), 19q12 (CCNE1) and 8q24.1 (MYC) were frequently subclonal and exhibited an illusion of clonality within single samples. Analysis of an independent series of 1024 metastatic samples revealed enrichment for 14 focal SCNAs in metastatic samples, including late gains of 8q24.1 (MYC) in clear cell renal carcinoma and 11q13.3 (CCND1) in HER2-positive breast cancer. CIN may enable ongoing selection of SCNAs, manifested as ordered events, often occurring in parallel, throughout tumour evolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.