The development of an active, earth-abundant, and inexpensive catalyst for the oxygen evolution reaction (OER) is highly desirable but remains a great challenge. Here, by combining experiments and first-principles calculations, we demonstrate that MoS2 quantum dots (MSQDs) are efficient materials for the OER. We use a simple route for the synthesis of MSQDs from a single precursor in aqueous medium, avoiding the formation of unwanted carbon quantum dots (CQDs). The as-synthesized MSQDs exhibit higher OER activity with a lower Tafel slope in comparison to that for the state of the art catalyst IrO2/C. The potential cycling of the MSQDs activates the surface and improves the OER catalytic properties. Density functional theory calculations reveal that MSQD vertices are reactive and the vacancies at the edges also promote the reaction, which indicates that the small flakes with defects at the edges are efficient for the OER. The presence of CQDs affects the adsorption of reaction intermediates and dramatically suppresses the OER performance of the MSQDs. Our theoretical and experimental findings provide important insights into the synthesis process of MSQDs and their catalytic properties and suggest promising routes to tailoring the performance of the catalysts for OER applications.
The development of efficient materials for the generation and storage of renewable energy is now an urgent task for future energy demand. In this report, molybdenum disulphide hollow sphere (MoS2-HS) and its reduced graphene oxide hybrid (rGO/MoS2-S) have been synthesized and explored for energy generation and storage applications. The surface morphology, crystallinity and elemental composition of the as-synthesized materials have been thoroughly analysed. Inspired by the fascinating morphology of the MoS2-HS and rGO/MoS2-S materials, the electrochemical performance towards hydrogen evolution and supercapacitor has been demonstrated. The rGO/MoS2-S shows enhanced gravimetric capacitance values (318 ± 14 Fg−1) with higher specific energy/power outputs (44.1 ± 2.1 Whkg−1 and 159.16 ± 7.0 Wkg−1) and better cyclic performances (82 ± 0.95% even after 5000 cycles). Further, a prototype of the supercapacitor in a coin cell configuration has been fabricated and demonstrated towards powering a LED. The unique balance of exposed edge site and electrical conductivity of rGO/MoS2-S shows remarkably superior HER performances with lower onset over potential (0.16 ± 0.05 V), lower Tafel slope (75 ± 4 mVdec−1), higher exchange current density (0.072 ± 0.023 mAcm−2) and higher TOF (1.47 ± 0.085 s−1) values. The dual performance of the rGO/MoS2-S substantiates the promising application for hydrogen generation and supercapacitor application of interest.
Multidrug resistant (MDR) bacteria have emerged as a major clinical challenge. The unavailability of effective antibiotics has necessitated the use of emerging nanoparticles as alternatives. In this work, we have developed carbohydrate-coated bimetallic nanoparticles (Au-AgNP, 30–40 nm diameter) that are nontoxic toward mammalian cells yet highly effective against MDR strains as compared to their monometallic counterparts (Ag-NP, Au-NP). The Au-AgNP is much more effective against Gram-negative MDR Escherichia coli and Enterobacter cloacae when compared to most of the potent antibiotics. We demonstrate that in vivo, Au-AgNP is at least 11000 times more effective than Gentamicin in eliminating MDR Methicillin Resistant Staphylococcus aureus (MRSA) infecting mice skin wounds. Au-AgNP is able to heal and regenerate infected wounds faster and in scar-free manner. In vivo results show that this Au-AgNP is very effective antibacterial agent against MDR strains and does not produce adverse toxicity. We conclude that this bimetallic nanoparticle can be safe in complete skin regeneration in bacteria infected wounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.