Search for new phenomena in high-mass diphoton final states using 37 fb −1 of proton-proton collisions collected at √ s = 13 TeV with the ATLAS detectorThe ATLAS Collaboration Searches for new phenomena in high-mass diphoton final states with the ATLAS experiment at the LHC are presented. The analysis is based on pp collision data corresponding to an integrated luminosity of 36.7 fb −1 at a centre-of-mass energy √ s = 13 TeV recorded in 2015 and 2016. Searches are performed for resonances with spin 0, as predicted by theories with an extended Higgs sector, and for resonances with spin 2, using a warped extra-dimension model as a benchmark model, as well as for non-resonant signals, assuming a large extradimension scenario. No significant deviation from the Standard Model is observed. Upper limits are placed on the production cross section times branching ratio to two photons as a function of the resonance mass. In addition, lower limits are set on the ultraviolet cutoff scale in the large extra-dimensions model. c 2017 CERN for the benefit of the ATLAS Collaboration. 1 The ATLAS experiment uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points upward. Cylindrical coordinates (r, φ) are used in the transverse plane, φ being the azimuthal angle around the z-axis. The pseudorapidity is defined in terms of the polar angle θ as η = − ln tan(θ/2). The transverse energy is defined as3 Simulated Monte Carlo (MC) events are used for optimizing the search strategy [23], and for the signal and background modelling studies detailed in Sections 5 and 6, respectively. Interference effects between the resonant signal and the background processes are neglected.The spin-0 signal MC samples were generated using the effective-field-theory approach implemented in MadGraph5_aMC@NLO [24] version 2.3.3 at next-to-leading order (NLO) in quantum chromodynamics (QCD). From the Higgs characterization framework [25], CP-even dimension-five operators coupling the new resonance to gluons and photons were included. Samples were generated with the NNPDF3.0 NLO parton distribution functions (PDFs) [26], using the A14 set of tuned parameters (tune) of Pythia 8.186 [27,28] for the parton-shower and hadronization simulation. Simulated samples were produced for fixed values of the mass and width of the assumed resonance, spanning the range 200-2400 GeV for the mass, and the range from 4 MeV to 10% of the mass for the decay width. Choosing an improved signal model with an event generator different from the one used in Ref.[1] provides a description of the signal which is less sensitive to modelling effects from the off-shell region. The impact of this change is only visible in scenarios with a large signal decay width, with mass values at the TeV scale.Spin-2 signal samples for the RS1 model were generated using Pythia 8.186, with the NNPDF23LO PDF set [29] and the A1...
Search for heavy neutral leptons in decays of W bosons produced in 13 TeV p p collisions using prompt and displaced signatures with the ATLAS detectorThe ATLAS CollaborationThe problems of neutrino masses, matter-antimatter asymmetry, and dark matter could be successfully addressed by postulating right-handed neutrinos with Majorana masses below the electroweak scale. In this work, leptonic decays of W bosons extracted from 32.9 fb −1 to 36.1 fb −1 of 13 TeV proton-proton collisions at the LHC are used to search for heavy neutral leptons (HNLs) that are produced through mixing with muon or electron neutrinos. The search is conducted using the ATLAS detector in both prompt and displaced leptonic decay signatures. The prompt signature requires three leptons produced at the interaction point (either µµe or eeµ) with a veto on same-flavour opposite-charge topologies. The displaced signature comprises a prompt muon from the W boson decay and the requirement of a dilepton vertex (either µµ or µe) displaced in the transverse plane by 4-300 mm from the interaction point. The search sets constraints on the HNL mixing to muon and electron neutrinos for HNL masses in the range 4.5-50 GeV.
Study of the rare decays of B 0 s and B 0 mesons into muon pairs using data collected during 2015 and 2016 with the ATLAS detector The ATLAS Collaboration A study of the decays B 0 s → µ + µ − and B 0 → µ + µ − has been performed using 26.3 fb −1 of 13 TeV LHC proton-proton collision data collected with the ATLAS detector in 2015 and 2016. Since the detector resolution in µ + µ − invariant mass is comparable to the B 0 s -B 0 mass difference, a single fit determines the signal yields for both decay modes. This results in a measurement of the branching fraction B(B 0 s → µ + µ − ) = 3.2 +1.1 −1.0 × 10 −9 and an upper limit B(B 0 → µ + µ − ) < 4.3 × 10 −10 at 95% confidence level. The result is combined with the Run 1 ATLAS result, yielding B(B 0 s → µ + µ − ) = 2.8 +0.8 −0.7 ×10 −9 and B(B 0 → µ + µ − ) < 2.1×10 −10 at 95% confidence level. The combined result is consistent with the Standard Model prediction within 2.4 standard deviations in the B(B 0 → µ + µ − )-B(B 0 s → µ + µ − ) plane.
A search for a heavy charged-boson resonance decaying into a charged lepton (electron or muon) and a neutrino is reported. A data sample of 139 fb −1 of proton-proton collisions at ffiffi ffi s p ¼ 13 TeV collected with the ATLAS detector at the LHC during 2015-2018 is used in the search. The observed transverse mass distribution computed from the lepton and missing transverse momenta is consistent with the distribution expected from the Standard Model, and upper limits on the cross section for pp → W 0 → lν are extracted (l ¼ e or μ). These vary between 1.3 pb and 0.05 fb depending on the resonance mass in the range between 0.15 and 7.0 TeV at 95% confidence level for the electron and muon channels combined. Gauge bosons with a mass below 6.0 and 5.1 TeV are excluded in the electron and muon channels, respectively, in a model with a resonance that has couplings to fermions identical to those of the Standard Model W boson. Crosssection limits are also provided for resonances with several fixed Γ=m values in the range between 1% and 15%. Model-independent limits are derived in single-bin signal regions defined by a varying minimum transverse mass threshold. The resulting visible cross-section upper limits range between 4.6 (15) pb and 22 (22) ab as the threshold increases from 130 (110) GeV to 5.1 (5.1) TeV in the electron (muon) channel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.