The first crystal structure of an insect chitinase that is indispensable to moulting is revealed.
Fe/SiC hybrid fibers have been fabricated by electrospinning and subsequent high-temperature (1300 °C) pyrolysis in Ar atmosphere using polycarbosilane (PCS) and FeO precursors. It is found that the introduction of Fe has had a dramatic impact on the morphology, crystallization temperature, and microwave electromagnetic properties of the hybrid fibers. In addition, the Fe particles have acted as catalyst sites to facilitate the growth of SiCO nanowires on the surface of the hybrid fibers. As a result, the permittivity and permeability have been enhanced effectively, and the high reflection loss (RL) has been achieved at a low frequency band with a thin absorber thickness. At an optimal PCS/Fe ratio of 3:0.5, the hybrid fiber/silicone resin composite (35 wt %) with a 2.25 mm absorber thickness exhibits a minimal RL of about -46.3 dB at 6.4 GHz. The wide frequency band (4-9.6 GHz) and thin absorber thickness (1.5-3.5 mm) for effective absorption (<-20 dB) prove that the Fe/SiC hybrid fiber is a promising candidate to work as a highly efficient and lightweight absorber in the C band (4-8 GHz).
Hafnium carbide (HfC) phase, with a high melting point, excellent strength, and high electrical conductivity, could be a suitable addition to enhance the microwave absorption properties of one-dimensional silicon carbide (SiC) nanomaterials without sacrificing its high-temperature thermal stability. In the present work, HfC/SiC hybrid nanofiber mats with different HfC loading contents are fabricated by electrospinning and high-temperature pyrolysis. HfC hybrids with sizes of 5-10 nm are embedded in the SiC nanofibers. As the HfC content increases from 0 to 6.3 wt %, the average diameter of the fibers drops from 2.62 μm to 260 nm. Meanwhile, the electrical conductivity rises from 7.9 × 10 to 4.2 × 10 S/cm. Moreover, the flexibility of the nanofiber mats is also greatly improved, according to a 200-times 180° bending test. Furthermore, compared with pure SiC fiber mats, the HfC/SiC nanofiber mats possess much larger dielectric loss because of higher electrical conductivity. At the optimal HfC content of 2.5 wt %, the HfC/SiC nanofibers/silicon resin composite (10 wt %) exhibits a minimal reflection loss (RL) of -33.9 dB at 12.8 GHz and a 3 mm thickness with a broad effective absorption bandwidth (RL < -10 dB) of 7.4 GHz. The above results prove that introducing HfC into SiC nanofiber mats is an effective way to enhance their flexibility, dielectric properties, and microwave absorption performance.
Fiber alignment is a key factor that determines the physical properties of nanofiber mats. In this work, SiC nanofiber mats with or without fiber alignment are fabricated via electrospinning and the microwave electromagnetic properties of their silicone resin composites (5 wt %) are investigated in 2-18 GHz. By comparing with the composite containing SiC whisker, it is found that the nanofiber mats show superior dielectric loss and a minimal reflection loss (RL) of around -49 dB at 8.6 GHz and 4.3 mm thickness, associated with a broad effective absorption (<-10 dB) bandwidth (EAB) of about 7.2 GHz at 2.8 mm thickness. Moreover, the performance can be further enhanced (RL = -53 dB at 17.6 GHz and 2.3 mm thickness) by aligning the nanofiber in the plane of mat, accompanied by the shift of absorption peak to higher-frequency direction and broader EAB up to 8.6 GHz at 3 mm. In addition, the stacking ways of aligned SiC nanofiber mats (either parallel or perpendicular) are proved to have a negligible effect on their microwave properties. Compared with parallel stacking of the aligned mats, cross-stacking (perpendicular) only leads to a slight drop of the attenuation ability. It confirms that alignment of nanofiber in the mats offers a more effective approach to improve the microwave absorption properties than changing the ways of stacking. Furthermore, it is worth mentioning that the low loading fraction (5 wt %) is a great advantage to reduce the weight as well as the cost for large-scale production. All of these facts indicate that the aligned SiC nanofiber mats can serve as a great lightweight and broad-band microwave absorber.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.