To optimally penetrate biological hydrogels such as mucus and the tumor interstitial matrix, nanoparticles (NPs) require physicochemical properties that would typically preclude cellular uptake, resulting in inefficient drug delivery. Here, we demonstrate that (poly(lactic-co-glycolic acid) (PLGA) core)-(lipid shell) NPs with moderate rigidity display enhanced diffusivity through mucus compared with some synthetic mucus penetration particles (MPPs), achieving a mucosal and tumor penetrating capability superior to that of both their soft and hard counterparts. Orally administered semi-elastic NPs efficiently overcome multiple intestinal barriers, and result in increased bioavailability of doxorubicin (Dox) (up to 8 fold) compared to Dox solution. Molecular dynamics simulations and super-resolution microscopy reveal that the semi-elastic NPs deform into ellipsoids, which enables rotation-facilitated penetration. In contrast, rigid NPs cannot deform, and overly soft NPs are impeded by interactions with the hydrogel network. Modifying particle rigidity may improve the efficacy of NP-based drugs, and can be applicable to other barriers.
Integrins are membrane receptors mediating cell adhesion and mechanosensing. The structure-function relationship of integrins remains incompletely understood, despite the extensive studies due to its importance to basic cell biology and translational medicine. Using fluorescence dual biomembrane force probe, microfluidics and cone-and-plate rheometry, we applied precisely-controlled mechanical stimulations to platelets and identified an intermediate state of integrin α IIb β 3 , which is characterized by an ectodomain conformation, ligand affinity and bond lifetimes that are all intermediate between the well-known inactive and active states. This intermediate state is induced by ligand engagement of GPIbα via a mechano-signaling pathway and potentiates the outside-in mechano-signaling of α IIb β 3 for further transition to the active state during integrin mechanical affinity maturation. Our work reveals distinct α IIb β 3 state transitions in response to biomechanical and biochemical stimuli, and identifies a role for the α IIb β 3 intermediate state in promoting biomechanical platelet aggregation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.